Monday, 1 October 2018

N1 Number Notation, Place Value


NUMBERS – why do we need to know them well?
Numbers are usually written using: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
A number represents a value.
(1) To count: 1, 2, 3 strawberries    

NUMBER NOTATION


PLACE VALUES
    Value is the positional value of the digit in the number or where the digit is in the number.
    Stands for is another term used to describe ‘value’ in math.

What is a digit?

Digits are symbols or characters to represent a number in writing.
METHOD to find the VALUE in a number
Step1: Underline the digit in the number given
Step2: Replace the numbers after the digit with zeros
Step3: Write the answer in numeric form

Example:
What is the value of the digit 4 in 854013?
Step1: Underline 4                                             854 013
Step2: Replace number to right of 4 to 0            4000
Step3: Write : Answer: 4000

Practice:
What is the value of digit 3 in (a) 89300    (b) 55293   (c) 30984 

     ~~~~ END ~~~~ :)

N2 Number-Word-Number Conversion


EXPRESSING NUMBERS in WORDS
(1) Numbers can be expressed in words using hundreds, thousands and millions.
(2) The last number to be written must be preceded by an ‘and’.
Example       
                        8 is two hundred and seventy-eight
 0 8 is five thousand six hundred and eight
70 is forty-five thousand six hundred and seventy

METHOD 1 – Grouping 
Example: Write 8765432 in words

         Step 1: Separate numbers from right to left3 numbers in one group
Step2Fill From left to right:
-         first underline is for hundred,
-         second underline is for thousand
-         third underline is for million
Step3: Write the word

METHOD 2: Place-Value-Table 
 
place-value table can be drawn to teach placement of values and word notations. 

There are 4 main blocks to the place-value table:
                         (1) millions
                         (2) thousands
                         (3) hundreds and 
                         (4) decimals.

Within each block, it is further divided into hundreds, tens and ones.
A given number is to be written onto the place value table from the right to left. 
Example:
            Write 930527 in words
Step1DRAW/FILL ‘9’,’3’,’0’,’5’,’3’,’7’ from the right to the left.

Step2: READ the number from left to right, and including the word at every end of 
Practice: 
Write the following in words : (a) 2930     (b) 47084     (c) 106507
{Ensure that the spellings are correct}


FROM WORDS TO NUMBER
METHOD1
Example

Convert eight million seven hundred and sixty-five thousand four hundred and   thirty-two to numbers

Step1: Look/CIRCLE keywords – hundredthousand and million
Step2: For million: draw underlines with commas      ,          .
                  thousands:  2 underlines      ,     .
Step3: Fill in numbers: million on first underlinethousands on 2nd underline and hundreds on 3rd underline
Eight million 8,   ,    seven hundred and sixty-five thousand 8,765,   four hundred and thirty-two 8,765,432
              Answer:  8,765,432

METHOD2
Example           

Write Eight million, seven hundred and sixty-five thousand, four hundred and      thirty-two in number form.

 Step 1UNDERLINE keywords – “Million’ (if any), ‘thousand’ 


 Step 2: CIRCLE words before keywords ‘Million’, ‘thousand’ and the last group.
      8           ,                                 765                              ,                         432
Step 3WRITE numbers below the circle, and put a comma for the underline words. 

Answer: 8,765,432

From WORDS TO NUMBERS (DECIMAL)

Decimal number in words has ‘~th’, ‘tenth’ is the first decimal place, ‘hundredth’ is the second decimal place and ‘thousandth’ is the third decimal place as can be seen from the place value table.


REMEMBER:
             Words with ‘th’ is for decimal place.
            t,h,th is Tenth, Hundredth, Thousandth’

METHOD
Example: Convert thirty tenth to number form
Step1UNDERLINE whole number and double underline ‘th’ words.
                                    thirty tenth

Step2WRITE0 . t, h, th
Step3PUT whole number with last digit at tenth
                                           0 . t, h, th
                                           30 (replace 0 if number ‘spill over’)
Example
            Convert thirty-three thousandths to words
Step1UNDERLINE whole number and double underline ‘th’ words.
                        thirty-three thousandths
Step2WRITE0 . t, h, th                            
Step3PUT whole number with last digit at thousandth          
                                           0 . t, h, th
                                           0 . 0 3  

WORD TO NUMBERS (Whole number and decimal)
If there are whole numbers and decimal, ‘breaks’ the words and ‘add’ back.

Example: 
       Write 4 hundred, 5 tenths and 6 thousandths in number form.
Step1Underline whole number and double underline ‘th’ words.
            hundred tenths and 6 thousandths
Step2Write0 . t, h, th                              
Step3Arrange numbers below “: 0 . t, h, th” and Add the numbers

            (4 hundred to use whole number method) 
                                           0 . t, h,th
                                       400 .
                                           0 . 5 
                                     +    0 . 0 0  6
                                       400 . 5 0  6

                 ~~~~ END ~~~~ :)