Monday, 1 October 2018

R4 Ratio: Two Ratios and Changing Values Word Problems

Two Set of Ratios and Changing Values
Common ratio questions: The question gives the initial ratio of two items, and then certain quantities are added or subtract from one of the quantity, resulting in a new set of ratio.

There are three methods given to solve for example 1.
The methods are (1) PROPORTION, (2) Models and (3) Comparison.
PROPORTION METHOD
Step1: Underline/Circle Keywords, and write value given
Step2: Put in the Ratio Value (u) and New Ratio Value
Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)

Example1
The ratio of the number of apples to the number of oranges in a basket was 5:4. After I gave away 21 apples, the ratio became 2:3. How many apples and oranges are there altogether in the basket in the end?

PROPORTION METHOD
Step1: Underline/Circle Keywords, and write write value given
                                                     A      O
                                                     5   :    4      
                                                   -21   
                          New Ratio           2  :    3

Step2:  Put Ratio Value (u) and New Ratio value
                                                     A      O
                                                     5u  :   4u
                                                     -21     
                          New ratio              2  :    3
                A's new value = 5u -21
                O's new value = 4u (no change)

Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)
                                                            O
                                                      5u  :   4u
                                                     -21  
                   New ratio                    2    :   3
                   New ratio value   5u - 21  :   4u
                  
                  => AA
                       OOO
           
                  => AA AA AA
                       OOO OOO

              3A = 2O  ( or cross multiply for 3A and 2O to equate value)
                              [Proportionally, A = 2/3O ]
                   
              3(5u – 21) = 2 x (4u)         
                 15u – 63 = 8u                                                             
             15u  63 + 63 – 8u  = 8u   8u + 63                    
                           7u = 63                                                                      
                             u = 9          
         OR
                     3A = 2O 
        (5u - 21) + (5u - 21) + (5u - 21) = 4u + 4u       
                                          15u – 63  = 8u  
                              8u + 7u - 63 + 63 =  8u + 6
                                                     7u = 63
                                                       u = 9
               In the end, there are 9u – 21 = 9 x 9 - 21 = 60 fruits  

   {{Using Model to explain A = 2/3 O [3A = 2O] 
         2/5 of A = 3/5 of O => Equal numerator
         Find the common numerator(factor),
            Common factor for 2 and 3 = 6
               A = 2/5 x 3/3 = 6/10, B = 3/5 x 2/2 = 6/10
               A = 6/15, B = 6/10
           
                    A = 5u – 21, B = 4u
                  3A = 2O         
                  Solve for u as above.
      }}

Model Method 
Step1: Keywords and Draw Model
            A : O
            5 : 4                 

Step2: Link the before and after ratio
       Since there is no change to the number of orange
            A : O
            5 : 4                 
        -21 
           2 : 3 

Step3: Find common u by ‘equaling’
(a) Common Factor of 4 and 3 = 12, Divide both before and after into 12 parts
           7u = 21
            u = 3. 
     There are 20 x 3 = 60 fruits

Comparison Method
Step1: Keywords and Identify Type of Compare
 - Constant Unchanged / No change to one Constant : Orange
            A : O
            5 : 4                 
        -21 
           2 : 3 
Step2: ‘Equal’ the ‘Before’ and ‘After’ ratio number for orange 
            A : O
            5x3 : 4 x3
        -21 
           2x4 : 3 x4
Step3: Find u with Changed unit
            A : O
            15u : 12u
          -21 
             8u : 12u
         
         7u = 21
            u = 3

Example2
PROPORTION METHOD
The ratio of Annabel’s ribbons to Clara’s ribbons is 1:3. After Clara gave Annabel 9 ribbons, the ratio became 2:3. Find the number of ribbons Annabel had at first.
Step1: Underline/Circle Keywords, and write value given
                                         A      C
                                         1   :    3      
                                       +9       -9
               New ratio            2  :    3

Step2:  Put Ratio Value (u) and New Ratio value
                                         A      C
                                         1u  :   3u
                                         +9      -9
              New ratio              2  :    3
               A's new value = u + 9
               C's new value = 3u - 9
Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)
                                         A      C
                                       1u  :   3u
                                       +9      -9
              New ratio            2    :  3 
     New ratio value         u+9  :   3u-9

                  => AA
                       CCC
              
                 => AA AA AA
                      CCC CCC

                   3A = 2C (or cross multiply for 3A and 2C to equate value)

                         3(u + 9) = 2(3u - 9)                                        or
           3u – 3u +27 + 18 = 6u – 3u - 18 + 18                 3u + 27 = 6u - 18
                                  45 = 3u                                 3u + 27 + 18 = 6u – 18 + 18
                                  3u = 45                                         3u + 45 = 6u
                                    u = 15                                         3u + 45 = 3u + 3u
                                                                                               3u = 45
            Annabel had 15 ribbons at first.


Model Method
Step1: Keywords and Draw Model

Step2: Link the before and after ratio
 - There is no change to the total value

Step3: Find common u by ‘equaling’
(a) Common Factor of 4 and 3 = 12, Divide both before and after into 12 parts
  3u = 9, u = 3
            Annabel had 5 x 3 = 15 ribbons at first

Example3
At first, the ratio of Alan’s marbles to Kevin’s marbles was 3:4. After Alan bought another 9 marbles and Kevin lost 18 marbles, the ratio became 3:2. Find the number of marbles Alan had at first.
Step1: Underline/Circle Keywords, and write value given
                                         A      K
                                         3   :    4      
                                       +9       -18
            New ratio            3  :    2

Step2:  Put Ratio Value (u) and New Ratio value
                                         A      K
                                         3u   :    4u  
                                       +9       -18
                                           3  :    2
               A's new value = 3u + 9
               C's new value = 4u - 18
Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)
                                              K
                                         3u   :    4u  
                                       +9       -18
                New ratio             3  :  2 
        New ratio value     3u+9  :   4u-18
                  => AAA
                       KK
   
                 => AAA  AAA
                      KK KK KK

                   2A = 3K ( or cross multiply for 2A and 3K to equate value)

                      2(3u + 9) = 3(4u - 18)                                    or
          6u – 6u +18 + 54 = 12u – 6u – 54 + 54         6u + 18 + 54 = 12u – 54 + 54
                                 72 = 6u                                           6u + 72 = 12u
                                 6u = 72                                           6u + 72 = 6u + 6u
                                   u = 12                                                   6u = 72, u = 12
Alan had 3 x 12 = 36 marbles at first. 

Model Model

Step1: Keywords and Draw Model
Step2: Link the before and after ratio
 - Both change in quantities
Step3:  
Relate quantity to U
      
u + 3 = 2u – 9
u = 3 + 9
   = 12 
Alan had 3 x 12 = 36 marbles at first.

Example 4
The ratio of the number of pears to the number of mango was 3:2. After 10 pears were taken away, the ratio became 2:3. How many fruits are there altogether in the end?

PROPORTION METHOD
Step1: Underline/Circle Keywords, and write value given
                                         P      M
                                         3   :    2      
                                       -10   
                     New              2  :    3

Step2:  Put Ratio Value (u) and New Ratio value
                                         P      M
                                         3u  :   2u
                                         -10   
               New ratio            2  :    3

               P's new value = 3u - 10 
               M's new value = 2u (no change)

Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)
                                       P      M
                                         3u  :   2u
                                         -10       
            New ratio                2  :  3 
            New Value     3u - 10 :   2u                
      
                  => PP
                       MMM
     
                  => PP   PP  PP
                       MMM  MMM

                                      3P = 2M

                        3(3u – 10 ) = 2 x (2u)
                             9u – 30 = 4u
                             9u - 4u -30 + 30 =  4u - 4u + 30
                                      5u = 30
                                      u = 6
               In the end, there are 5u – 10 = 30 -10 = 20 fruits       

Example5
The ratio of the number of woman to the number of men in a concert is 2 : 3. 65 women left and the ratio of the number of women to the men  became 1:4. Find the total number attended the concert.

PROPORTION METHOD
Step1: Underline/Circle Keywords, and write value given
                                         W      M
                                         2   :    3      
                                       -65      
                                         1  :    4
Step2:  Put Ratio Value (u) and New Ratio value
                                         W      M
                                         2u   :    3u  
                                       -65      
            New ratio              1  :    4

              W's new value = 2u - 65 
              M's new value = 3u (no change)

Step3: Equate New VALUE with NEW RATIO and solve (by cross multiply)
                                         W      M
                                         2u   :    3u  
                                       -65      
               New ratio              1  :  4 
      New ratio value     2u -65  :    3u
     
                 =>  W
                       MMMM

                 => W W W W   
                        M M M  M

              4W = M (cross multiply for 4W and M to equate value)
                      4(2u - 65) = 3u                                   or
                         8u - 260 = 3u                                   8u – 260 + 260 = 3u + 260
        8u – 3u -260 + 260 =  3u – 3u + 260                           3u + 5u  = 3u + 260
                                  5u = 260                                                      5u = 260
                                    u = 52                                                          u = 52
            Total number = 5 x 52 = 260

Example6
The ratio of the number of red balls to the blue balls was 3 : 7. After equal number of red and blue balls were given away. In the end, the ratio of the red balls left to the blue balls was 5:13. There were 20 red balls in the end. How many red balls were given away?
Step1: Underline/Circle Keywords, and write information
                                         R      B
                                         3   :    2      
                                       same number taken   
                                          5  :    13
            20 red pens for 5part, 1 part = 20/5 = 4
            Black pen = 4 x 13 = 52

Step2: Put in the Ratio Value (u)
                                         R      B
                                         3u   :    7u  
                                       same number taken   
                                          20  :    52

Step3: Since equal number of balls are taken away
                                    3u – 20  = 7u – 52                    3u – 20 + 52 = 7u – 52 + 52
                                    7u – 3u = 52 – 20                              3u +32 = 3u + 4u
                                            4u = 32                                             4u = 32
                                              u = 8
            3x 8 – 20 = 4 red balls are given away.

     ~~~~ END ~~~~ :)