Monday, 1 October 2018

F4 Fraction : Multiply and Divide


PRODUCT OF FRACTIONS
Product of Two Proper Fractions
The common word terms for multiply (x) are multiple of, of, product of
Method
Step1: Look for common factors in numerator and denominator.
            Reduce the values by the common factor

Step2: Multiply the numerator
Step3: Multiply the denominator


Product of a Fraction and a Whole Number
Step1: Write whole number as Fraction with denominator as 1
   Step2: Look for common factors in numerator and denominator.
                   Reduce the values by the common factor

   Step3: Multiply the numerator

   Step4: Multiply the denominator
Product of a Mixed Number and a Whole Number

Method
Step1: Change the mixed number to an improper function
   Step2: Look for common factors in numerator and denominator.
                   Reduce the values by the common factor

   Step3: Multiply the numerator
Step4: Multiply the denominator

Example:
Product of an Improper Fraction and a Proper fraction
Example
            3 x 5 = 3 x 5
            2   8      2 x 8
                     = 15
                        16

Product of a Mixed Number and an improper Fraction
   
                                    = 7 x 6
                                       5    5
                                    = 42    (to convert to mixed number)
                                       25
                                    = 1 17
                                          25

DIVISION OF FRACTIONS
Recap: Multiplication
                        3 x 5  = 15 = 1        or    3 x 5  = 1
                        5    3     15                        5   3

<   Multiplying by the “inverse” of the fraction itself  = 1  >

Practice:
            4  x   9    = 1                ☐ x 7  = 1               x  3     = 1         ☐   x  5    = 1
                 ☐                         ☐    2                      3    11                  5        6


Solutions:
            4  x   9    = 1               2  x 7  = 1               11   x  3     = 1        6   x  5    = 1
            9       4                        7     2                        3     11                  5       6


Linking to Fraction Division

Example         2     ÷    5
                        3           7               
             =         2 x 7    ÷    5 x 7     < multiply both fractions by “inverse” of
                        3    5          7   5      <optional : to explain why invert the 2nd number >
             =         2 x 7    ÷    1
                        3    5         
             =           14

                          15
Method
Example  1   ÷   3
                5        4
Step1      1st fraction stays, change ÷ to x
                 1   x 
                5      
Step 2     Inverse 2nd fraction
                 1   x   4
                5         3

Step3     Solve
                 1  x  4
                5  x  3
             =  4
                15

Dividing a Proper Fraction by a Whole Number
Step1:  Frist number stays, Change ÷ to x

Step2: Invert the divisor

Step3: Solve

Example



Example
Albert had 5/6l of milk. He split it equally into cups. Each cup contained 1/12l of milk. How many cups did Albert use?
Step 1Keywords/Method? 
- Circle Number, underline keywords
[student to understand 5/6l is a quantity (5/6) l (litre), not fraction 5/6 ]

{Draw Working}
     [‘Split equally’ => divide, 5/6l , 1/12 l => fractions divide]
Step 2Use fraction Division Method
     a ÷  c  = a  x  d
     b     d     b      c
5 ÷ 1   = 5 x 12 2 
6   12  = 6      1 
           = 5 x 2
           = 10
Step 3Answer the question
[How many cups did Albert use?]
     Albert used 10 cups.

VIDEO
Example of solving Fraction division Word Problems

Revise/Refresh:
100
Fractions
Decimals
8 ÷ 100 = 8 / 100
 2/25
0.08
25 ÷ 100 = 25 / 100
 1/4
0.25
30 ÷ 100 = 30 / 100
 3/10
0.3
50 ÷ 100 = 30 / 100
 1/2
0.5
62.5 ÷ 100 = 625 / 1000
 5/8
0.625
75 ÷ 100 = 75 / 100
 3/4
0.75
80 ÷ 100 = 80 / 100
 4/5
0.8
97.5 ÷ 100 = 975 / 1000
 39/40
0.975
           ~~~~ END ~~~~ :)