Monday, 1 October 2018

M5 Shape : Circle : Circumference and Area, Semicircle / Quarter Circle


What is a Circle?
 - Round in shape
 - a shape that is curved and without sharp angles

  A circle has

            1.       Circumference : outline, edge, boundary
            2.         Centre O : equal length from point O to the circumference
            3.         Diameter : line passing through O to the circumference
            4.         Radius : distance from O to the circumference

RADIUS AND DIAMETER
          Diameter = 2 x radius  = 2r                  
         Radius = ½ of diameter = ½ d
                                    d = 2r ,  r = ½ d

CIRCUMFERENCE OF A CIRCLE
Circumference is the Outline of a circle; or its perimeter.
Circumferenceπ d [π x d]
                          = π x 2r [ d = 2 x r ]
                          = 2 π r [number is always placed in front]
  ~ Circumference is also when a circle makes one complete turn.


AREA OF A CIRCLE
Area of a Circle π x r x r               [ r x r = r2, cm x cm = cm2]
                             = π x r2
                             = π r2
Example:
The diameter of bicycle wheel is 14cm. Find the circumference. (Take π =22/7)

Method
Step1:  Circle/Underline keywords, identify topic of question
Step2:  Draw Circle(if need) and write formula for circumference 
circumference = π d 
Step 3 : Solve : Use given values and formula 
                        Circumference = 22/7 x 14
                                                = 22 x 2 = 44 cm

Example : Find the area of the circle (π = 22/7 )
                         
   Step 1:  Circle/Underline keywords , identify topic = circle area
   Step 2:  Draw Circle and write required formula : area=πr2
   Step 3:  Solve : Use given values and formula            
                       D=28 , r = d/2 = 28/2 = 14cm
                       area= π r2
                               = 22/7 x 14 x 14
                               = 616cm2

SHAPES RELATED/ASSOCIATED WITH A CIRCLE

                    Circle                    Semicircle               Quarter-Circle(Quadrant)
          

Circle = 2 semicircles            1 semicircle = ½ circle           1 quadrant = ½ semicircle  
          = 4 quadrants                                  = 2 quadrants                       = ¼ circle

SEMICIRCLE
             ½  of a circle; 2 semicircles of the same radius form a circle

PERIMETER OF A SEMICIRCLE
            Perimeter of a semicircle = ½ x 2 π r + d
                                                        = π r + d
                                                        = π r + 2r
AREA OF A SEMICIRCLE
Area of a Circle =1/2 π x r x r                     [ r x r = r2, cm x cm = cm2]
                             = ½ π x r2
                             = ½ π r2

QUADRANT 
      = ¼ of a circle

PERIMETER OF A QUARTER CIRCLE(QUADRANT)
            Perimeter of quadrant = ¼ of circumference of circle + radius + radius
                                                   = ¼ x 2 π r + (r + r)
                                                   = ½ π r + 2r
                                                   = ½ π r + d

AREA OF A QUARTER CRICLE (QUADRANT)
Area of a quadrant = ¼ of area of a circle
                                 = ¼ x  π  r x r                [ r x r = r2, cm x cm = cm2]
                                 = ¼  π x r2


Example
The circumference of a circle of radius 7 cm is 44cm. what is the perimeter of a quadrant?

Method
   Step1:  Circle/Underline keywords (circumference 44cm, 7cm radius, perimeter of quarter circle)

   Step2:  Draw Circle and write required formula for circumference 
circumference = π d
            
   Step 3:  Solve : Use given values and formula                                               
             [Perimeter = the line that bounds the shape, trace with finger]      
                
                Perimeter of quadrant = r + r + ¼ circumference
                                                = 7 + 7 + ¼ x 2 x 7 x 22/7


                                                = 14 + 11 = 25cm
Example
The figure shows two identical semicircles of radius 14cm. Find the perimeter of the figure (take π = 22/7). 

Step 1:  Circle/Underline keywords [ to identify topic and recall method to solve]
               [ Semicircle, perimeter => perimeter = outline, semicircle formula]  
                 - semicircle = ½ of circle circumference = ½ x 2 π r = π 
Step 2:  Trace outline and write parts to calculate 
Calculate value for the parts [perimeter of semicircle]
Perimeter of ½ circle circumference = ½ x 2 π r
                      = ½ x 2 x 22/7 x 14
                      = ½ x 2 x 22/7 x 142
                      = 22 x 2 
                      = 44 cm
Step 3:  Solve by adding all the parts of the perimeter
               Perimeter of figure = 5 + 44 + 5 + 44
                                                 = 98 cm

RELATED/ASSOCIATED PORTION OF A CIRCLE
                       
Look out for:
(1) Curved-section -> part of a circle
(2) Square / Rectangle
      - Quarter Circle if curved part is touching diagonal of square
      - Semicircle if curved part is on side of square/rectangle

Example 1: 
ABCD is a square. AB = 7cm. Find the green area. [curved section -> part of a circle]
                                       

Method
   Step 1:  Circle/Underline keywords

   Step 2:  Draw Circle and write required formula : area of square = side x side; area of circle =πr2
                        

   Step 3:  Solve : Use given values and formula           
                        r = 7
                        area of square = 7 x 7 = 40cm2
                       area=π r2
                              =1/4 x 22/7  x 7 x 7
                              = 38.5 cm2
                          Area = 49 – 38.5 cm2 = 10.5 cm2

Example 2

The figure shows a right-angle isosceles triangle in a circle. O is the centre of the circle. The area of the triangle 64cm2. Find the total area of the shaded part.


Step1Write formulae and method

            Area of circle =πr2

            Area of triangle = ½ x base x height

            Area of shaded area = Area of circle – Area of Triangle

Step2Find the required data

            Given = 64 cm2

            Required data = Radius

Area of triangle = ½ x r x 2 r 

                         r2  =  64

                        r = 8cm

Step3 : Solve

Area of shaded area =πr2 – 64

                                     = 3.14 x 8 x 8 – 64

                                     = 136.96 cm2

Example 3

The figure is made up of three identical circles. Point A, B and C are the centres of the respective circles. The radius of each circle is 14cm. Find the total area of the shaded parts. (Take π = 22/7)

Step1Write Formula, data and method

            Formula : Area of Circle = π r2

          Drawn triangle = equilateral (the sides are radii of the circles)

                                      = 60o angle 

Step2Find and ‘deconstruct’ the composite shapes

 “Shift” the shaded portion of each part to the unshaded portion 

Each = segment of circle with angle = 60o


Step3 : Solve

There are three 60o segment of circles = 60o + 60o + 60o = 180o

Area of shaded parts = Area of semi-circle

                                      = ½ x π  x r2

                                   = ½ x 22/7 x 14 x 14

                                      = 1078 cm2


** This is generally the method to solve over-lapping circles : 

     - 'shifting'/'moving' parts to make up to segment of a circle. 

  Formula for Area of Segment = Angle of segment  x π  r2

                                                               360o

Summary



VIDEO
Circle Content : Circumference and Area, Semicircle and Quarter Circle


                     ----- Do you know? ----------

   π  is a number = ratio of a circle's circumference to its diameter
                           = 3.14159265359 ~ 3.14  = 22/7
Circumference =  πd = 3.14 x d

Ratio of circle Circumference to its Diameter
            Circumference : Diameter


                        3.14       : 1
Diagrammatically,


        ~~~~ END ~~~~ :)