Secondary School Maths Notes

NUMBERS/ALGEBRA

NUMBERS


Conversion of Unit of Measurement

Length

(mm = millimeter cm = centimeter   m = metre)

1 cm = 10 mm,          1 m = 100 cm,           1km = 1000 m          

1km = 1000m = 100000cm (1000 x 100)               


Area

1 cm2 = 1cm x 1cm = 10mm x 10mm = 100mm2

1 m2 = 100 cm x 100 cm = 10000 cm2

1km2 = 1000m x 1000m = 1 000 000 m2


Mass

1 g = 1000mg,          1kg = 1000g

1 ton = 1000kg


TIME

1 min = 60 seconds (s)

1 hour (h) = 60 min (m)                               


1h = 60 x 60 = 3600s

1m = 1/60 h

1s = 1/60 m, 1/3600 h

1s = 1 x 109 nanosecond


0.5 or ½ hr = 30 mins


Volume

1 litre = 1000ml = 1000cm3

            1cm3 = 1ml


Comparing and Ordering Numbers

Symbols

                        >    greater than

                        <    less than

                        ≥    greater than or equal to

                        ≤    less than or equal to

                        =    equal

                        ≠  not equal to


Tip to remember

                                                   4  >  3

        greater = "open mouth"       >      “point” = less than

  

Similarly,

                                                   3  <  4

                  less than = “point”     <       greater = "open mouth"            





Significant Digits

Rules                                  

Number is Significant for


 1.         Every non-zero                                      : 42549           (5 sig digits)

 2.         Zeros in between digits                          : 1001, 1.003 (4 sig digits)

 3.         Zeros at end of numbers with decimals : 300.100       (6 sig digits)


Number is not significant for


 1.         Zeros to left of numbers                         : 00003467 (4 sig digits)

 2.         Zeros at end of non-decimal numbers   : 823000     (3 sig digits) 

 3.         Zeros to right of decimal number < 1     : 0.0005      (1 sig digits)


[ For Decimal, remember to put a trailing zero for specified significant figure. 

            Eg: 0.200 is 3 significant figures]


Order Of Operations

  1st Order : (  )  e      Bracket   Exponential              BE / BO (e.O – Order)            

  2nd Order : ÷ X    Multiplication And Division     DM

  3rd Order : +   -       Addition And Subtraction        AS


             [ B E D M A S] / [B O D M A S]



Direct and Indirect Proportion

Direct proportion: As one variable (Y) increases , another variable (X) increases at the same proportion/rate.

=> as y increase , x also increases proportionally

            y α x                           Symbol of proportion: α 

The equation for direct proportion is

            y = kx                        (where k is the constant of proportionality)


Inversely Proportion: As one variable (Y) increases, another variable (X) decreases at the same proportion/rate.


            => As y increases , x decreases proportionally

The equation for inverse proportion:

                         y= k


Map Scale

Scale of drawing = Drawing length : Actual length

          Map Scale = Map distance : Actual Distance

If the scale of a map is given as 1 : 200 000

=> 1cm represents 200 000 cm    (200 000 cm = 2000m = 2km)

=> 1cm represents 2 km


1cm : 2km

1cm x 1cm = 1cm2: 2km x 2 km = 4km2

1cm2: 4 km2  

  • Area calculation: (first calculate 1cm2 represent how many km2) *

Standard Form                                                                       


            K x 10m   where K is between 1 to 9      1 <= K < 10


Illustration of Common Order of Magnitude

Using 1 g:

 1 gigagram (Gg) = 1 x 109 g

       1 tonne (Mg) = 1 x 106 g

    1 kilogram (kg) = 1 x 103 g

   1 milligram(mg) = 1 x 10-3

1 microgram (µg) = 1 x 10-6 g

 1 ng (nanogram) = 1 x 10-9 g


Indices Rules

Positive Indices

          (1)  am x an= am+n             

          (2)  am ÷ an = am-n            

          (3) (am)n= am x n                

 

Zero and Negative Indices

         (4)  a-m = 1/ am                 

         (5)  a0 = 1                         


Fractional Indices

          (6)  a1/2 = √a                             

          (7)  am/n = n√am                                 



ALGEBRA 

1.  ab = a x b      


2.  a/b => a ÷ b => a x 1

                                    b

3.  a2= a x a,           a3= a x a x a


4.  a2b = a x a x b,            ab2 = a x b x b

            

5.  3p = 3 x p = p + p + p 


6.  3(p + q) = 3 x (p+ q) = 3p + 3q


7.  2(3 + y) =  2(3 + y) ÷ 5 =  2(3 + y)

     5                                           5


8. a2 + a= a(a + 1)        a2   = a x a, 


Evaluating the "nth" Term

A formula can be given to a number sequence so that we can find the number in the sequence by substituting or "putting" the value into the formula. 


The nth term => the number in the nth position in the number sequence.


Addition and Subtraction

An algebraic expression can be simplified by "grouping" of the same variables and number operations

Example

Simplify 2a + 4 + 2a + 1

             = 2a + 4a + 4 + 1 (Step 1 : "Group" variables and numbers)

  = 6a + 5                            (Step 2 : Do the + - )


Expansion of Linear Expressions

Expansion usually involves removing the bracket.


=>   a (b + c) = ab + ac


Expansion of 

                                    

                        ( a + b) ( c + d) =   ac + ad     +   bc + bd                         

                                                         /\                        /\

                                             [      a x (c + d)  +    b x (c + d)    ]


   It is also called the "rainbow" arrow


Multiplication/Division OF ALGEBRAIC FRACTIONS       

Simplify by 'reducing' the numbers and variables 

(Crossing out same variables and numbers from numerator/denominator of the algebraic expressions)


Example

Simplify the algebraic Expression

a   x   3b

          9         a

 Step 1 : Look for numbers that can be reduced => 3 and 1/9 can be reduced by 3

            : a and 1/a can be reduced a/a = 1

(1a) a   x   3b

        3 9        a


(1b) a   x    b

          3        a

Step 2 : Simplify

1   x  b

                                 3

      =   1 b or  b  

                                 3        3


Division of Algebraic fraction

First,  to 'convert' the expression to multiplication before simplifying.

=> a     ÷     c      =    a      x     d

                                           b            d            b             c

Example

Simplify 3b  ÷  2b

               4       a

        =    3b  x  a                (Step 1 : Change the ÷ to multiply by 'flipping' the fraction)

               4   2b               (Step 2 : Look and "cross" same variables/numbers)

        =     3a           (Step 3 : Simplify)

                8


Factorising Linear Algebraic Expression

Extracting Common Factor/s                   


Rule:            ab + ac = a(b+ c)


Example

Factorise a2 + 3a

  = a(a + 3).        (Step 1 : Look for Common factors ->  a, a2 = a x a)


To remember:

               (a + b)2 = a2 + 2ab + b2 = (b + a)2

    (a - b) = a2 - 2ab + b2

                a2 – b2 = (a + b) x (a - b)


22 = 4               32 = 9               42 = 16               52 = 25             62 = 36

72 = 49             82 = 64             92 = 81             102 = 100         112 = 121


Solving Fractional Equations (linear equation)                                  

Linear fractional Equation can usually be solved by simplifying the equation to having a single denominator.


Example

Solve y/2 + y/3 = 2

Step 1 : Find the lowest common factor (LCM) for the denominators

LCM of 2 and 3 = 6

Step 2 : Combine into single fraction

             ½y + y = 2

             3 x y + 2 x y  = 2

             3 x 2   2 x 3  

  3y + 2y = 2

                  6

  6 x 5y = 2 x 6 (multiply both side by 6 => "cross over : x 6 too)

                    6

  5y = 12

  y = 12/5 = 2 2/5


Multiplication property of Inequalities

     x +ve number

               if a < b and c > 0, then ac < bc    eg: 2 < 3 , x 3 => 6 < 9

               If a > b and c > 0, then ac > bc    eg: 3 > 2,  x 3 => 9 > 6

            

      x  –ve number

            If a < b and c < 0, then ac > bc       eg: 2 < 3 , x -3 => -6 > -9 

  => the sign changed from < to >

          

  If a > b and c < 0, then ac < bc       eg: 3 > 2 , x -3 => -6 < -9

  => the sign changed from > to <

   

             [[ x –ve    : change sign from < to > or > to <       ]]


Solving Fractional Quadratic Equations


Cross-Multiplying =>

            a = c     =>      x ba  =   c   x bd    =>   ad = bc

            b    d                        b       d