Monday, 1 October 2018

M4 : Shapes and Area - Square and Rectangle

SHAPES
        
(1) Form of an object - how it is laid out in space
     (not what it is made of, or where it is).
(2) Perimeter : the length of the sides forming the shape, or
                            the distance of the closed figure

(3) Area: the amount of surface that is enclosed by the shape.
Name the Shapes
       
2D and 3D Shapes


SQUARE

   (1)   4-sided figures , 4 equal sides   (length of all sides are equal)
         
Perimeter and Area
               
     Perimeter = S + S + S + S             Area = S x S
                      = 4 x S                                       = S2 cm2
                      = 4S cm 
Example
What are the perimeter and area of figure A?          
                                       
Method:
Step1: Circle/Underline Keywords. Draw(if need be) and Trace shape
         < Perimeter – use finger to trace the outline, area-finger to go over the area>
Step2: What is the formula for this shape? (Perimeter=4 x A, Area = A x A)
Step3: Use the formula to calculate the required measurement

                Perimeter = 4xSide =  4 x 7 = 28 cm                                                                
                Area = side x Side = 7 x 7 = 49cm2

Example:
Linda bent a wire 32 cm long into a square. What is the length of the side of the square?
Step1: Trace and draw what’s required
                                          Wire = 32cm
         
Step2: What is the formula for this shape? (Perimeter=4 x A)
Step3: Use the formula to calculate the required measurement
               Perimeter = 32 cm = 4 x Side
               Length of side =  32 ÷ 4 = 8cm

Example
What is the perimeter of the square when the area is 36cm2?
Step 1 : Circle/Underline Keywords, draw a square, and write Area = 36cm2
                                         
Step2: Formula for the shape?
           (Area = S x S, Perimeter=4S)
Step3: Solve
        Area = 36cm2
        Side = 6cm
        Perimeter = 4 x 6cm = 24cm

Common Number Square that Learners need to know:
                                   

RECTANGLES
                
            (1) 4-sided figure/shape
            (2) Opposite sides are equal
            (3) Opposite sides are parallel to each other
            (4) It has 4 right angles
            (5) Longer side is called the length, shorter side is called the breadth


Perimeter and Area
       
      Perimeter                                                       Area
      = length + breadth + length + breadth       = Length x Breadth
= 2 x Length + 2 x Breadth                         = L x B
= 2 (Length + Breadth)
            PERIMETER    = 2 (L + B)                   AREA = L x B

Note: Squares and Rectangles are special quadrilateral
<<< tri ~ 3 , quad ~ 4, cir ~ round >>>
Example: 
Find the perimeter and area of the rectangle.
                          
Step1: Circle/Underline  Keywords. Draw and Trace what’s required
         < Perimeter – use finger to trace the outline, area-finger to go over the area>
Step2: Formula for this shape? Perimeter=2(L+B), Area = L X B
Step3: Solve: Use the formula to calculate the required measurement
 Perimeter = 2 x (L + B)                                      
                             = 2 x (4+6)                                                               
                             = 2 x 10 cm = 20 cm                                               
          Area = L x B = 4 x 6
                               = 24 cm2


Example:

The perimeter of a rectangle is 28cm. Its length is 8cm. Find its breadth and area.
Step1: Trace/Draw what is required
< The student draws the rectangle and fill in the required details – length = 8cm, perimeter=28cm>

                      
Step2: What is the formula for this shape? Perimeter=2(L+B), Area = L X B
Step3: Use the formula to calculate the required measurement
                     Perimeter = 2 X (L + B)
                            28cm = 2 (8 + B)
                           28 / 2 = 8 + B
                            14     = 8 + B
                                B = 14 – 8 = 6 cm
            
                Area = L X B = 8 cm x 6 cm
                         = 48cm2
Example
           
Step1: Trace/Draw what is required
< GF = AB, GE = GF + FE, BC = AG – CF(=DE), Angle GAB = 90o >
Step2: What is the formula for this shape? <All sides of square are equal>
Step3: Use the formula to calculate the required measurement
CDEF = square
 FE = DE = 8 cm
 GE = GF + FE = 15 + 8 = 23 cm

 BC = BF – CF
 BF = AG = 12cm
 CF = DE = 8cm
 BC = 12 – 8
       = 4 cm
{Angle P = 90 – 18 – 36 = 36o}

     ~~~~ END ~~~~ :)