Monday, 1 October 2018

G3 Geometry : Angles Formulae


Triangles - 3 sides, sum interior angles = 180o
     Sum Angles of a triangle = 180o
      a + b + c = 180o       
     The three angles inside a triangle always add up to 180°
(1) Equilateral  Triangle
        (a) All sides are of equal length.
       (b) Sum of Angles = 180o       
       (c) Each angle = 180 / 3 = 60 o  
                 
(2) Isosceles Triangle
        (a) 2 sides of equal length (parallel black lines)
        (b) 2 angles are of equal degree
                 a = b
        (c) All angles add to 180o

(3) Scalene Triangle
        (a) No equal sides, each side is of different length
        (b) No equal angles, each angle is different
        (c) All angles add to 180o

Right-angle triangle         
      (a) one of the angle = 90o
     (b) The two sides that form the right angle are the base and height


OTHER ANGLES FORMULAE
Turns/Rotation
~ Associate the amount of turning(rotation) with an amount measured in degree.
~ Turns can be clockwise or anti-clockwise.
   3/4 turn = 270o.
Adjacent Angles on a Straight Line
    a + b = 180o
    c + d = 180o .
   << Adjacent ~ next to >>

Vertically Opposite Angles
Opposite angles at the point where 2 straight lines cross 
-> Vertically opposite angles are equal to each other.
       a = c
       b = d 
<< Opposite ~ facing    👉👈>>

Corresponding Angles (F)
The 2 arrows on the straight lines indicate that the lines are parallel to each other.


(1)   a and b are called corresponding angles and are equal to each other.
                        a = b
                        c = d
(2) Identify corresponding angles (F): parallel line, F (in any position), 
both angles ‘below’ the two F parallel lines and the ‘intersecting’ line
  << Correspond ~ equivalent 👉👉>>  << Remember equivalent fractions? 😉>>

Alternate Angles (Z)
The 2 arrows on the straight lines indicate that the lines are parallel to each other.
 (1) a and b are called alternate angles and are equal to each other.
                                                a = b
 (2) Identify alternate angles (Z) : parallel line, ‘Z’ and angles on both points of Z.
     << Alternate ~ occurs in turn  >>

Relating Different Angles
 Vertically Opposite               Corresponding    Alternate
            c = g                          b = g                   a = b
            j = k                           d = h                   c = d
           e = h                           c = p                   p = h
What are the other angles?

Quadrilateral  - 4 sides, Sum interior angles = 360o
Parallelogram
(a) Opposite lines are parallel and equal
            AB is parallel to CD, AD is parallel to BC
            AB = CD , AD = BC
(b) Opposite angles are equal
            a = c, b = d
(c) Supplementary Angles a + d = 180o
                                             b + c = 180o
Trapezium

   (a) Line AB is parallel to CD
  (b) ∠a + ∠d = 180o∠c + ∠b = 180 o

Rhombus


(a) Diagonal line AC and BD forms a right angle at the centre. 
(b) Line AB parallel to CD, Line AD parallel to BC
(c)  AB = BC = CD = AC
(d)  a = c , d = b
(e)  a + b = 180oc + d = 180o
Note:
<<< tri ~ 3 , quad ~ 4, cir ~ round >>>

METHOD TO SOLVE GEOMETRY QUESTIONS
     Step1: Underline and Mark the keywords
     Step2Double Mark Required angles
     Step3Solve using Given Data (from step1&2) and Formulae

Example

In the figure, RSTU is a rhombus and SVU is an isosceles triangle. UV = VS, ∠STU = 72o and SVY = 44o.
Find UST and TSV.

Step1Underline and Mark the keywords
            - Rhombus, all sides equal, ‘mark’ all side with a single line
            - Isosceles triangle, mark 2 sides with 2 dashes and 2 angles. 

Step2Double Mark Required angles

Step3Solve using Given Data (from step1&2) and Formulae
          (1)   To find UST
          What is given? UST is within the triangle UST (isosceles triangle, and 72 o)
          Formula: Isosceles triangle, and sum angles of triangle
72o + TUS +UST = 180 o
TUS = UST (isosceles triangle)
2UST = 180 o – 72 o
  UST = 108 o / 2
                 = 54 o
           (2)  To find TSV
          What is given? < isosceles triangle SUV, and 44 o)
          Formula: Isosceles triangle, and sum angles of triangle
44 o + VUS +USV = 180 o
VUS = USV (isosceles triangle)
2USV = 180 o – 44 o
  UST = 136 o / 2
                 = 68 o
              TSV = 68 o – 54 o
                        = 14 o
Example
            
        Find x
    Step1: lines to indicate equilateral ∆
    Step2: double Mark ‘X’
    Step3: What is the formula that  can be used?
∆ABC is equilateral ∆.
Each angle = 60o (angles in a triangle)
                X = 60o

Example
        
    Find x
     Step1: lines to indicate isosceles ∆, 1 angle = 35 o
     Step2: Double Mark ‘X’
     Step3: Formula to use?
           (Isosceles angle -> 2 equal angles,angles in a ∆=180o)
CAB = ACB = 35o (isosceles triangle)
               35o + 35o + x = 180o (angles in a ∆)
               X = 180o – 70o = 110o  
Example:
           
   Find x
   < Formula? -  Angles at a point >           

   90o + 140o + 54o + x = 360o (angles at a point)
   x = 360o – 90o – 140o – 54 o
      =  74o                 

SUMMARY:
Triangles - 3 sides, sum interior angles = 180o
Angles

Quadrilateral  - 4 sides, Sum interior angles = 360o
Related Angles
          
~~~~ END ~~~~ :)