Wednesday, 25 March 2020

S3: Geometry Radian

DEGREE AND RADIAN

Both degree and radian is a measure of angle.




Radian is defined as the angle from the centre of a circle which intercepts an arc equal in length to the radius of the circle.


                  360o = 2π rad

                  => 1o = 2π rad / 360o

  

        2π rad = 360o

          =>   rad = 360o / 


Converting between Degree and Radian


                  360o = 2π rad

  or

                 π rad = 180o


Example

What is the value of 240o in rad?

     360o = 2π rad 

                240o =  rad x 240o

                                 360o

                        = 4π/3 rad


Example

What is the value of 3 radian in degree?

             rad = 360o

                           1 rad = 360o / 2π

                           3 rad = 360o x 3 / 2π

                                    = 171.81o




           Degree

              Radian


1o =  π rad

      180

1 rad = 180o

              π

One Circle

360

2πrad

Circumference

2πr

2πr

Arc(S)

θ    x 2πr

360

Area of circle

πr2

πr2

Area(segment)

θ    x πr2

360

      r

2

S2T3 Solving Simultaneous Equations

Usually given 2 equations with 2 variables, and to find the values of the variables.


Example

Solve for x and y for the following equations:

      3x + 2y = 21  ------ (1) Equation 1

      4x + y = 8 ---------- (2) Equation 2


The variables are x and y


There are usually three methods to use for Simultaneous Equation:


(1) By Substitution

(2) By Elimination

(3) Graphical


(1) By substitution (when there is a X or Y):

Example

Solve for x and y:      

      3x + 2y = 21

        4x + y = 8


Step 1: look for variable with unit digit (1), eg: x or y


Step 2: Arrange equation as such: 

      4x + y = 8

      y = 8 – 4x


Step 3: Substitute y in the other equation (1) and solve

      3x + 2y = 21

      3x + 2(8 – 4x) = 21

      3x + 16 – 8x = 21

        -5x = 21 – 16

       -5x = 5

           x = -1


Substitute x = -1 into y = 8 – 4x, 

          y = 8 -4(-1)

             = 8 + 4 = 12

          y = 12


[[ Test if values of x and y are correct   ]]

Since we use equation 1 to find y, substitute value of x and y into (2).

3 (-1) + 2(12) = -3 + 24 = 21 => value of x and y are correct!


(2) By Elimination

'Getting ride' of 1 variable by 'ADDING' or 'SUBTRACTING' both equations

-   1 of the variables must have the same numerical in both equations.


Example

By ADDING

     5y + 2x = 2  --------- (1)

    -5y - 3x = 8  ---------  (2)

  

Using (1) + (2) 

    5y + 2x = 2

+ -5y - 4x = 8.    [5y + (-5y) = 5y - 5y = 0 ]

     0  -x2 = -6  (eliminated Y , find both x and then y)

          x = -6/-2 = 3

Substitute x = 3 into (1) [to find y]

                5y +2(3) = 2

                  y = 2 - 6 = 4

                  y = 4/5


BY SUBTRACTING

       -3x + 2y = 1  ------- (1)

       -3x + 5x = 7 -------- (2)


Using (1) - (2)

       -3x + 2y = 1  

   -   -3x + 5y = 7      [-3x - (-3x) = -3x + 3x]

               -3y = -6 (eliminated X , find y and then x)

                 y = -6/-3 = 2

    Substitute y = 2 into (1)

             -3x + 2(2) = 1

                 -3x = 1 - 4

                    x = -3/-3

                       = 1


Example

Solve the equations by elimination method.


      3x + 2y = 9 --------- (1)  

      4x + 3y = 8 ----------(2)  


Step1: look for variables with smaller digits, (y:2y and 3y, x: 3x, 4x; choose y)


Step2: Make y in both equations to be the same value => 6y by multiplying

      3x + 2y = 9     x3 

      9x + 6y = 27  -------- (3)

          

      4x + 3y = 8    x2  

      8x + 6y = 16   -------- (4)


Step3: Eliminate by + or –

      [both are 6y, 6y => (3) – (4)  because 6y – 6y = 0] 

(3) – (4)


      9x + 6y – (8x + 6y) = 27 – 16

      9x + 6y – 8x – 6y = 11

                  x = 11

OR place the equation in this way:-

        9x + 6y = 27

  -     8x +6y  = 16

          x + 0  = 11   [ x = 9x – 8x, y is eliminated from 6y – 6y= 0, 11 = 27 – 16]

          x = 11

Sub x = 11 into 1

      3(11) + 2y = 9

      33 + 2y = 9

      2y = 9-33

      2y = 24

        y = 12


By Graphical Method
Value of x and y of 2 equations is at the point of interception of the line of equations on the graph 

2 linear equations:y = 2x – 2
                              y = -2x + 4
From the graph, the intersection coordinate is (3/2, 1) => x = 3/2 and y = 1

Tuesday, 24 March 2020

S2TN Properties and Solving Inequalities

Solving Inequalities                                                            S2 – N7           (S1 – N7 – O)

Recap: 

Symbols

                        >    greater than

                        <    less than

                        ≥    greater than or equal to

                        ≤    less than or equal to

                        =    equal

                        ≠  not equal to


Tip to remember

                                                   4  >  3

        greater = "open mouth"       >      “point” = less than

  

Similarly,

                                                   3  <  4

                  less than = “point”     <       greater = "open mouth"            


Example

    

            Solve 7 < 4x – 3 < 13

 

Step1: Remove number from the expression with x [ 4x – 3]

          [+ 3 to all the expression so that the inequalities remain the same]

 

            7 + 3 < 4x – 3 + 3 < 13 + 3

                10 < 4x < 16

 

Step2: Remove the numerical coefficient of x

                        10 < 4x < 16

                         4     4       4

2 ½ < x < 4


Multiplication property of Inequalities

     x +ve number

               if a < b and c > 0, then ac < bc    eg: 2 < 3 , x 3 => 6 < 9

               If a > b and c > 0, then ac > bc    eg: 3 > 2,  x 3 => 9 > 6

            

      x  –ve number

            If a < b and c < 0, then ac > bc       eg: 2 < 3 , x -3 => -6 > -9 

  => the sign changed from < to >

          

  If a > b and c < 0, then ac < bc       eg: 3 > 2 , x -3 => -6 < -9

  => the sign changed from > to <

   

             [[ x –ve    : change sign from < to > or > to <       ]]



Example

Find the value of x  

a.           5x ≥ 15                                   

               x ≥ 5            ( Divide both side by +5)                    


b.         -2x > 6

              -x < -3               (Divide both side by 2)

             -1 x -x > -3 x -1  (We need to solve for x, and not -x)

               x < 3                 (multiply by -1 => change sign )


Monday, 23 March 2020

S3TN Solving Fractional Equations and Others

Solving Fractional Quadratic Equations


Cross-Multiplying =>

            a = c     =>      x ba  =   c   x bd    =>   ad = bc

            b    d                        b       d


[[ The Equation must be ax2+ bx + c = 0 before factorising ]]


Example 

solve    6   = x + 3

          x + 4


            6      =    x + 3 

         x + 4

 6 = (x + 3)(x + 4)         (Step1:  Cross-Multiply)



   6 = x2+ 7x + 12          (Step2: Expand to form a quadratic equation)

   x2+ 7x + 12 – 6 = 0

   x2+ 7x  + 6 = 0

  (x + 1)(x + 6) = 0         (Step3: Factorise and Solve for x)

   x + 1 = 0 or x + 6 = 0

   x = -1 or x = -6


Example

Solve      1       +    2       = 5

            x -2        x – 3 


              (x – 3)  + 2 x (x – 2)   = 5        (Step1: LCM the denominator)

        (x - 3)(x -2)  (x – 2)(x – 3)

            x – 3  + 2x – 4  =  5                   (Step 2 : Combine to single fraction)

              (x – 2)(x -3)

         x + 2x – 3 – 4 = 5        

           (x – 2)(x -3)

               3x – 7       = 5

         (x – 2)(x – 3)


          3x – 7 = 5(x – 2)(x – 3).              (Step 3 : Cross-Multiply and Expand)

          3x – 7 = 5(x2– 5x + 6)

          3x – 7 = 5x2– 5x + 6

          5x2– 5x + 6 – 3x + 7 = 0. 

          5x2-8x + 13 = 0                           (Step 4: Factorise and Solve for x)                                       

          (5x + 13)(x + 1) = 0                                           5x   \ /    13

     5x + 13 = 0 or x + 1 = 0                                           x    / \     1  

           x = -13/5 or x = -1


Solving Equations by equating Coefficients


Example


Find the value of A, B and C

2x4 - 13x3 + 19x2 + 5x + 1 = (x - 4)(Ax + 1)(x2 + Bx + 1) + C


Tips : 
1. Such questions are usually solved by equating the coefficient values
2. If there are more than 2 brackets, expands in pairs
3. Solve the unit value first, and then the highest powers of X


Step 1 - Expand brackets (if needed)

   2x4 - 13x3 + 19x2 + 5x + 1 = (x - 4)(Ax + 1)(x2 + Bx + 1) + C

   2x4 - 13x3 + 19x2 + 5x + 1 = (x - 4)(Ax + 1)(x2 + Bx + 1) + C [Expands 1 pair]


                    (x - 4) (Ax + 1) = (Ax2 + (1 - 4)x - 4) (x2 + Bx + 1) + C


  2x4 - 13x3 + 19x2 + 5x + 1 = (Ax2 + (1 - 4A)x - 4)(x2 + Bx + 1) + C


Step 2 - extract  and solve from comparing coefficients 

  Extract coefficient  of x4.   [=> x2 x x2 , x3 x x , x4 x unit value ]


      2x4 - 13x3 + 19x2 + 5x + 1 = (Ax2 + (1 - 4A)x - 4)(x2 + Bx + 1) + C

                   2x4  =  Ax2 x x2

    A = 2  [Equating x4 coefficient]

    

  Extract and equating coefficient of unit value

    1 = (-4 x 1) + C

C = 1 + 4

C = 5


Step 3 - Substitute values and find remaining unknown


     2x4 - 13x3 + 19x2 + 5x + 1 = (2x2 -7x - 4)(x2 + Bx + 1) + 5


  Extract and equating x coefficients

5x = -7x x 1 - 4Bx

             5 = -7 - 4B

  4B = -12

                B = -3 


A = 2, B = -3, C = 5



S2T2 Solving Linear and Fractional Equations

 Solving Linear Equation                                      

Equation : 

(1) a mathematical expression containing the symbol "=

           L.H.S = R.H.S


(2) often contains ALGEBRA => variables, such as x and y (to represent the number that we do not know)


(3) examples: y = 3, y + 3 = 10, y = 2x + 3


(4) solving an equation => finding the value of the variable/s (unknown).


(5) must follow the order of operations - BIDMAS ( Bracket, Indices, Divide, Multiply, Add, Subtract).


Example

 Solve for x                                                                            

               5x + 7 = 2x + 28


Step 1 : "move" the variable to LHS, and numbers to RHS

                 LHS   RHS

              5x + 7 = 2x + 28

  5x -2x + 7 - 7 = 2x + 28 - 2x - 7

              5x -2x + 7 - 7 = 2x + 28 - 2x - 7


[ when "moving", the equation must remain 'balance", thus -2x and -7 are applied to both side]


Step2 : Do x/+- to solve

              5x – 2x = 28 – 7 

                      3x = 21

                        x = 7


["Move" also => "changing" the sign of the number/variable at the other side (LHS/RHS).]


Example

Solve for 2y + 4 = y -6

      2y + 4 -y - 4 = y - 6 - y - 4 (step 1: move y to LHS, nos to RHS)

     2y + 4 -y - 4 = y - 6 - y - 4

         y = -10


Solving Fractional Equations (Linear equation)                                  

Linear fractional Equation can usually be solved by simplifying the equation to having a single denominator.


Example

  Solve y/2 + y/3 = 2


Step 1 : Find the lowest common factor (LCM) for the denominators

LCM of 2 and 3 = 6


Step 2 : Combine into single fraction

             ½y + y = 2

             3 x y + 2 x y  = 2

             3 x 2   2 x 3  

     3y + 2y = 2

                  6

  6 x 5y = 2 x 6 (multiply 6 => "1/6(LHS) = x 6 (RHS))

                  6

  5y = 12

  y = 12/5 = 2 2/5


Example

   Solve y – 2 = 3

             3        4

 LCM of 3 and 4 = 12

      4x +  3x (y – 2)  = 3       (Step 1 :Find LCM and multiply)

      4x 3      3x    4

       

      4y + 3y – 6 = 3       (Step2 : Combine into single fraction)

             12

       7x – 6 = 3        (Step3: Cross-over the denominator and solve)

          12

      7x – 6 = 3 x 12

      7x = 36 + 6

       x = 42/7 = 6


Example

Solve    3   = 3

          x – 2 

          3 = 3(x – 2)    (Step1: Bring the denominator to the right)


            3 = 3x – 6     (Step2: Expand the bracket)


            3x – 6 = 3    (Step3: Solve for x)

            3x = 3 + 6

              x = 9/3

                 = 3