Tuesday, 24 March 2020

S2TN Properties and Solving Inequalities

Solving Inequalities                                                            S2 – N7           (S1 – N7 – O)

Recap: 

Symbols

                        >    greater than

                        <    less than

                        ≥    greater than or equal to

                        ≤    less than or equal to

                        =    equal

                        ≠  not equal to


Tip to remember

                                                   4  >  3

        greater = "open mouth"       >      “point” = less than

  

Similarly,

                                                   3  <  4

                  less than = “point”     <       greater = "open mouth"            


Example

    

            Solve 7 < 4x – 3 < 13

 

Step1: Remove number from the expression with x [ 4x – 3]

          [+ 3 to all the expression so that the inequalities remain the same]

 

            7 + 3 < 4x – 3 + 3 < 13 + 3

                10 < 4x < 16

 

Step2: Remove the numerical coefficient of x

                        10 < 4x < 16

                         4     4       4

2 ½ < x < 4


Multiplication property of Inequalities

     x +ve number

               if a < b and c > 0, then ac < bc    eg: 2 < 3 , x 3 => 6 < 9

               If a > b and c > 0, then ac > bc    eg: 3 > 2,  x 3 => 9 > 6

            

      x  –ve number

            If a < b and c < 0, then ac > bc       eg: 2 < 3 , x -3 => -6 > -9 

  => the sign changed from < to >

          

  If a > b and c < 0, then ac < bc       eg: 3 > 2 , x -3 => -6 < -9

  => the sign changed from > to <

   

             [[ x –ve    : change sign from < to > or > to <       ]]



Example

Find the value of x  

a.           5x ≥ 15                                   

               x ≥ 5            ( Divide both side by +5)                    


b.         -2x > 6

              -x < -3               (Divide both side by 2)

             -1 x -x > -3 x -1  (We need to solve for x, and not -x)

               x < 3                 (multiply by -1 => change sign )