Sunday, 1 March 2020

S3TN Length of a Line and Equation y = mx + c

Find the Distance on a Line between 2 Coordinates


               Distance = (y1 - y2)2 + (x1 - x2)2

Example













(a) What is the distance between p and q?

(b) What is the gradient of the line?

(c) What is the equation of the line?


(a) What is the distance between p and q?

      Let's also see how the formula is derived.

             

                      Distance = (y1 - y2)2 + (x1 - x2)2


Using Pythagoras Theorem to find the distance. 

        c2 = a2 + b2














Step 1 : Find the Coordinate for k(x,y) => to get  a and b

             Mark p and q coordinates on x and y axes.

              a = 5 - 1 = 4

              b=  6 - 3 = 3


Step 2 : Use c2 = a2 + b2 to find L

         L2 = 32 + 42

                     = 9 + 16

                 L2 = 25

                  L = 25 

            = 5


(b) What is the gradient of the line?

      Gradient = y2 - y1           (Step 1 : Write Formula)

                        x2 - x1

                   = 6 - 3 / 5 - 1.   (Step 2 : substr and calculate)

                   = 3/4


(c) What is the equation of the line?

      Equation of the line y = mx + c

      

Step 1 : What is lacking in the equation? c (y intercept)

             Identify values to find c :  m = gradient = 3/4 and (x,y) = (1,3)

              

             Substitute values into the equation:

             3 = 3/4(1) + c

             c = 3 - 3/4 = 2 1/4


Step 2 : Form the Equation     

       Equation of the line : y=3/4x + 2 1/4


Example

Find the distance between (-7, -1), (5,4).

L = Distance = (y1 - y2)2 + (x1 - x2) (Step 1 : Write Formula)

L =  √( -7 -5)2 + (-1 - 4)                       (Step 2 : Substr value)

    = √144 + 25

    = √169

    = 1