Sunday, 1 March 2020

S2T2 Graph of Linear Function y = mx + c

LEARNING OBJECTIVE:

Understanding:

(1)     (a) Cartesian coordinate (x,y),        

         (b)  y = mx +c 

              m = the gradient 

               c =  y-intercept


(2) Using the equation y = mx + c with given data

                            

(1) A Cartesian coordinate graph: two axes ("axes" plural of "axis"):

  • Horizontal axis is called the x-axis
  • Vertical one is the y-axis


(2) Coordinates are points on a graph 

       Format: (x, y)


(3) The centre point of the graph is called the origin (0, 0)

      It is the zero point of both the x-axis and the y-axis. 


Plotting a coordinate: 

Step1: locate on x-axis

Step2: locate on y-axis

Step3: "Move"/plot for both to "meet"


Example

     Plot coordinate (5,10) on the graph                          

Practice on same graph:

     Plot coordinates (-5, 5), (10,0), (0,5)


Graph of Equation of a Straight Line

A linear (straight line) equation has a standard form:  

                            y = mx + c


Example: 

     y = 2x +c 

     y = -x + 5 

     y = 4

     x = 3 are all linear equations.


On the graph, the equation of the line y = mx+c = the LINE drawn.


Equation of the Line and its Coordinates

Coordinates are points on the line that satisfies/can be substituted into the equation.

                  Equation of the line y = 2x + 8

Examples

To test if the following coordinates are on the line y = 2x + 8. 

a. (-4,0),        b. (-3,2)        c. (5, 5) 


Equation of the line is y = 2x + 8

(a) Substitute (-4,0) into y = 2x + 8 

                        =>  0 = 2(-4) +8

      (-0, -4) is on the line.


(b) Substitute (-3,2) into y = 2x + 8 

                        =>  2 = 2(-3) +8

      (-3, 2) is on the line.


(c) Substitute (5,5) into y = 2x + 8

                  => 5 ≠ 2(5) + 8

(5, 5) is a coordinate on the graph but not on the line.


Graph Below : y = 2x + 8, and the coordinates (-3,2), (-4,0) and (5,5).


Name the other coordinate on the line (satisfy the equation).

=> (1,10)


If the line passes through a coordinate (x,y), => can be used for the (x,y) of the equation : y = mx + c


Practice: What are the coordinates of (x1, y1), (x2, y2), (x3, y3)?


What is c (the y-intercept)?

c = y-intercept 


=> where the equation(line) intercept/‘cutsthe y-axis

     Coordinate : (0, y), (0, c). 
         
         Line cuts y-axis at 5          
         c = 5

Finding the value of c from the equation


Equation of a straight line:

              y = mx + c 


c= the y-intercept; coordinate (0,c)


Example:

(1)       y = 3x + 5  => c = 5, (0,5)

(2)       y = -x – 3   => c = -3 (0,-3)

(3)       2y = 5x + 6      (must change equation of format: y = mx + c)

             y = 5x + 6

                        2

               = 5x + 3,  => c = 3 (0, 3)

                   2


(4)       -3y = -2x + 9    (must change equation format to: y = mx + c)

            2x - 9 = 3y

             3y = 2x - 9

                          3

                  = 2/3 x - 3,  => c = -3 (0, -3)


What is m?

                      y = mx + c


Gradient(m) is the ‘steepness’ or slope of a graph. 


Formula: 

                    Gradient = y2 – y1

                                       x2 – x1

We need 2 sets of coordinates (x, y) on the line to find the gradient(m). 


Example: 

Find the gradients of the following graphs.


(x1, y1) = (0, -2), (x2, y2) = (5,8)                  (x1, y1) = (-5, 7), (x2, y2) = (1,-5)              

   Gradient = -2 – 8                                                   Gradient = 7 – (-5) 

                        0 - 5                                                                        -5 - 1 

                   = -10/-5                                                                     =12/-6

                   = 2                                                                             = -2

 

Observation:

1. The gradient/"slope" is positive (2) for  (0, -2), (5,8) as it is  "ascending" from left to right.

  Slope Upward => positive gradient(+m)


2. The gradient/"slope" is -2 for (-5,7), (1-5) as it is "descending" from left to right.

          Slope downward => -m


3.  When calculating the value of m, the (x,y) must be of the same "set order" =>

y1 - y2 or y2 - y1  NOT  y1 - y2

                x1 - x2     x2 - x1            x2 - x1


To find the Value of m from the equation

Equation of a straight line:


            y = mx + c 


Example:

(1)       y = 3x + 5 , m = 3


(2)       y = -x – 3, => y = (-1)x - 3, m = -1


(3)       2y = 5x + 6    (must change equation of format: y = mx + c)

             y = 5x + 6

                        2

               = 5x + 3, m = 5/2

                  2                   


(4)       -3y = 2x + 9  (must change equation of format: y = mx + c)

             -2x - 9 = 3y

                   3y = -2x - 9

                               3

                        = -2/3 x - 3,  m = -2/3


Equation Of Vertical And Horizontal Lines

(1) x = numeric value 

      -> a vertical line graph


Example: 

                        x=5

                     

         Equation of the line : x = 5


(2) y = numerical value 

         => a horizontal line graph. 


Example:


                         y=5

                          

   Equation of the line : y = 5


Level 2

To find intercept of 2 lines

(1) Use simultaneous equation or 


(2) the point of interception of the 2 lines on the graph 

2 linear equations:  y = 2x – 2

                               y = -2x + 4

From the graph, the intersection coordinate is (3/2, 1)

=> x = 3/2 and y = 1


Practice

1.  Draw a simple graph. Plot and label the point A(-2, 1) and B (3, 5).


2.  Find the gradient of the line AB   [17/I/92,2/T]


3.  Find the gradient of the line joining the points A (2, 6) and B(7,3)


4.   Find the gradient of the line joining the points A(2, 1) and B(4, 6)