Sunday, 22 March 2020

S3A3: Trigonometric function Y = A sin(Bx + C) + D

Trigonometric Function Y = A Sin (Bx + C) + D


A trigonometric function can be of the form:


   Y = A Sin (Bx + C) + D or Y = A Cos (Bx + C) + D 


   (A, B, C and D are numbers)


A : Amplitude => the height of the graph , A is always positive => |A| modulus 


B : Period => Number of Cycles within 360o  or 2π


C : Phase Shift : C/B => Moving the graph Left/Right along the x-axis


D : Vertical Shift => Moving the graph Up/Down along the y-axis


A : Amplitude=> Height of the graph

Example

Draw the graph Y = 2SinX


=> A = 2, B = 1, C = 0 , D = 0, A => Height from centre to the maximum/minimum point

=> Y = 2 Sin (1x + 0) + 0

=> y = 2 Sin X

   

 |A|  = Max value - Min value / 2


  Y = 2sinX : The “height” of the graph increased by 2 times from the centre


B : Period => Number of Cycles within 360o  


Y = Sin2X

=> A =1, B = 2, C = 0 , D = 0

=> Y = 1 Sin (2x + 0) + 0

=> y = Sin 2X


To find the number of cycles within 360o

Period = 2π / B   or     360o/B

            = 2π / 2           360o / 2

             = π                  180o

=> The entire cycle is within π, 180o


From the graph, there are 2 cycles within 360o

=> B indicates the number of cycles within 360o

      i.e. 2 => 2 cycles, 3 => 3 cycles , etc


C : Phase Shift : C/B => Moving the graph Left/Right


Y = Sin (X + 60o)

=> A = 1, B = 1, C = 60o , D = 0

=> Y = 1Sin (1x + 60o) + 0

=> y =  Sin( X + 60o)

Positive C “shifts” the graph to the left.


Y = Sin (X - 60o)

=> A = 1, B = 1, C = -60o , D = 0

=> Y = 1Sin (1x + 60o) + 0

=> y =  Sin( X - 60o)

Negative C “shifts” the graph to the Right.



D : Vertical Shift => Moving the graph Up/Down


Y = SinX + 1

=> A = 1, B = 1, C = 0 , D = 1

=> Y = 1Sin(X + 0) + 0

=> y =  SinX + 1

Positive D “shifts” the graph upward along the y-axis.



Y = SinX - 1

=> A = 1, B = 1, C = 0 , D = 1

=> Y = 1Sin(X + 0) + 0

=> y =  SinX + 1

Negative D “shifts” the graph downward along the y-axis.





No comments: