Monday, 16 March 2020

S3 - G3 : Arc Length, Area of Circle using Degree and Radian

Degree and Radian (Unit of Measures) for angles 


Radian is defined as the angle from the centre of a circle which intercepts an arc equal in length to the radius of the circle.


Both degree and radian is a measure of angle.


                  360o = rad

                 => 1o = rad / 360o

  

  rad = 360o

         =>   1 rad = 360o /



Converting between Degree and Radian


                  360o = rad


Example

What is the value of 240o in rad?

    360o = rad 

                240o = rad x 240o

                                 360o

                        = 4π/3 rad


Example

What is the value of 3 radian in degree?

           rad = 360o

                           1 rad = 360o / 2π

                           3 rad = 360o x 3 / 2π

                                    = 171.81o



   Degree
   Radian

1o =  π   rad
       180
1 rad = 180o
              π
Circle
360
2πrad
Circumference
2πr
2πr
Arc(S)
  θ    x 2πr
360 
rθ
Area of circle
πr2
πr2
Area(segment)
  θ    πr2
360
   rθ    
 2


Circles
                                 
   Formula
                      Angle at centre is twice angle at circumference    

No comments:

Post a Comment

Note: only a member of this blog may post a comment.