Monday, 20 January 2020

S1T1 Ratios

Ratio compares two or more quantities.


            Symbol of ratio is    


Ratio of quantity A to quantity B s written as                                                                                                    

                  A : B                                                                                        

** Ratio has no unit of measure


Example

Write the ratio 200:  250 in its simplest form

                  200 : 250

                  20÷5 : 25 ÷ 5

                      4 : 5

                  

                  a : b: c => a: b , b : c


Equivalent Ratios

Example

                       4 : 10 

                = 4 ÷2 : 10÷2

                =     2 : 5

4 : 10 and 2 : 5 are equivalent ratios.


Ratio in its simplest form

Example

Write 8 : 12: 36 in its simplest form


Step: Find the common factors for the given numbers and reduce

            8 ÷4 : 12÷4 : 36÷4

            2 : 3 : 9

       

Example: Write the ratio 200:  250 in its simplest form

                    200 : 250

                  20÷5 : 25 ÷ 5

                        4 : 5


Example

The ratio of the number of tables to the number of chairs is 1 : 4 in the restaurant. There are 6 tables, how many chairs are there?


Step 1 : Write the ratio and number of tables

T  C

1 : 4

Step 2 : Write the number of tables on both side of the ratio and multiply

T   C

1  : 4

                    x 4   x4

= 4  : 16


Step3 : Answer 

There are 16 chairs


Ratio with different Unit of Measure (UOM)

The UOM must be the same when comparing two of more quantities


Example:

John has $1 and Sally has 80cts as their daily allowance. What is the ratio of their allowance?


Step 1 : Convert the amount to the same unit (of the 'smaller' UOM)

$1 = 100cts

Step 2 :  Write the ratio and reduce the the lowest term

100 : 80

5  10 : 8 4

      5 : 4


Step 3 : Write the Answer

The ration is 5 : 4


Ratio involving Fractions and Decimals

Example

Express the following ratios in its simplest form.

  1.2 : 3 


Step 1 : Multiply 10 to both side (to remove the decimal)

x10.  1.2. :   3 x 10

12 :  30

Step 2 : Reduce the simplest term


<< divide by 6 for both side >>

    2    1230     5        

The ratio is 2 :  5


Example

Express the following ratios in its simplest form.


b.         1 ¾.  :    2 ½    


Step 1: Change both to improper fractions

    7  :  5

             4     2


Step 2 :  Make both side to have the same denominator

<< multiply 2 , by 2 >>

    7  :  x 2

             4     2  x 2


    7  :  10  

             4      4 

Step 3 : Write the numerators as the ratio

7 : 10


Connecting Ratio with Fraction

For a ratio   A : B, the 'total number of parts' = A + B


Thus in fraction form,    A's part is A / A+B

              B's part is B / A+B 

Example

There are 10 girls and 15 boys.

The ratio of the number of girls to the number of boys = 

10 : 15    or    2   :   3

The total part = 2 + 3 = 5


=>  Number of girls = 2/3 of number of boys

=>  Number of girls = 2/5 of the total

=>  Number of boys = 3/2 of number of girls

=>  Number of boys = 3/5 of the total.


Example

Abby and Bobby have 10 oranges altogether. 

The oranges are to be divided in the ratio of 3 : 2

How many oranges will each of them get?


Step 1: Find the total parts 

Total = 3 + 2 = 5


Step 2 : Compute their fraction's

  Abby = 3/5 , Bobby = 2/5


Step 3 : Compute by multiplying total quantity with the fractions

Abby has 3/5 x 10 = 6 oranges

Bobby has 2/5 x 10 = 4 oranges


Practice

1.  Express the following ratios in its simplest form.

(a) 4 :  20 [1 : 5]

(b) 35 : 14 [7 : 2] 

(c).      64 : 56 : 16 [8 : 7 : 2] 


2.   Express the following ratios in its simplest form.

a.    kg :  2 kg                        [5 : 12 ]

b.  1.6 cm : 4 mm                     [4 : 1 ]

c.  1 ½ hr : 20 mins                       [9 : 2 ]

d.  250 ml : 1 litre                          [1 : 4 ]


3.  Mary and Andy share a pizza in the ratio of 1 : 2. Andy gets 4 slices of the pizza. How many slices does Mary get? [2]


4.  Alice, Betty and Coby share their marbles in the ratio of 2 : 3 : 5. Find the amount each gets for each of the marbles.

a.  420 (b) 70                   [a. 84, 126, 210     b. 14, 21, 35]