Monday, 20 January 2020

S3TN Indices

Index/Power

The small, raised number next to a normal letter or number, to be multiplied by itself



Positive Indices

Example

What is the value of 22 x 24 ?

              = 2 x 2 x 2 x 2 x 2 x 2 

              = 26

              = 2 2 + 3


==> am x an = a m+n


Example 

What is the value of 25 ?

                                 22

                             = 2 x 2 x 2 x 2 x 2

                                    2 x 2

                             = 2 x 2 x 2 

                             = 23 => 2 5 -2 

==> am ÷ an = a m-n


Example

What is the value of (23)?

              = (2 x 2 x 2)2 = 82

              = 64 = 2 x 2 x 2 x 2 x 2 x 2

              = 26

==> (am)n = a m x n

              

Zero and Negative Indices

Example

What is the value of b2 ÷ b2?

    = b2 - 2       = b2/b2

    = b0           = 1   

==> a0 = 1


Example

What is the value of a2 ÷ a5 ?

     =       a x a                    = a 2 - 5

        a x a x a x a x a.        = a-3

     = 1

        a3

==> a-m = 1/am


Fractional Indices

The numerator is the power and the denominator is the root.

Example 

    a½ = (√a)1


Example 

What is the value of 8⅔ ?

   8   = (3√8)2

        = (2)2 = 4

==> am/n = (n√a)m


Indices Rules


 Positive Indices

          (1)  am x an= am+n             

          (2)  am ÷ an = am-n            

          (3) (am)n= am x n                

 

Zero and Negative Indices

         (4)  a-m = 1/ am                 

         (5)  a0 = 1                         


Fractional Indices

          (6)  a1/2 = √a                             

          (7)  am/n = n√am                                 


Example:


Simplify (xy2)3x (-3x2y)4


Step1: Open and Expand the bracket using (am)n= amxn

            = x3y2x3x (-3)4x2x4y4

            = x3y6x 81x8y4


Step2: Group numbers and variables

            = 81 x3+8y6+4

            = 81 x11y10


Example:

Solve for z: 9z = 27


                 (32)z= 33    (Step 1 : the lowest common no, 9=3x3, 27=3x3x3 => 3)


                  32z= 33    (Step 2 : Simplify)


                  2z = 3                (Step 3 : Solve by equating the power)

                    z = 3/2


Example

Find a

            5 a+2 = 5 √5 x 53    


            5 a+2 = 5 √5 x 53     (Step1: Change equation to xm = xn)

            5 a+2 = 5 √5 x 53

            5 a+2 = 51+½+3


           a + 2 = 1 + ½ + 3  (Step2: Solve by Equating power )

            a + 2 = 4 ½ 

            a = 4 ½ - 2

            a = 2 ½




Example

Find x.

            4x = 3√22 x 82


Step1: Find the lowest Common Value for the numbers.

            [look at the smallest number (2) and try]

            4x = 3√22 x 82        [ 4 = 22, 8 = 23 ]

            (22)x = (22)1/3 x (23)2


            22x = 2 2/3 x 23x2     (Step2: Change equation to xm = xn)

            22x = 2 2/3 x 26

            22x = 2 2/3 + 6


            2x = 6 2/3          (Step3: Solve by equating the power)

              x = 20 x 1

                     3     2

              x = 10/3


Video
Standard Form Example: Change 123.5 to standard form

Indices Rules and Example of ‘Simplifying Indices Question’
Example: Simplify (xy2)3 x (-3x2y)4


Indices – Solve Equation with a Power Variable (Example 1)
Example: Find a.  5 a+2 = 5 5 x 53

Indices – Solve Equation with a Power Variable (Example 2)
Example:  Solve for z. 9z = 27