Monday, 20 January 2020

S3T3 Index Notation, Standard Form

Index/Power

The small, raised number next to a normal letter or number, to be multiplied by itself


Example

b2= b x b

43 = 4 x 4 x 4

 

Square power 2 : 2

- multiplying by itself


Example

(1)        Square of 4 = 42 = 4 x 4 = 16                    

(2)        32 = 3 x 3 = 9

(3)        Square of (-5)2 = (-5) x (-5) = 25


Perfect Square are the squares of whole numbers: 

             (2 x 2) 4, (3 x 3) 9, (4 x 4) 16, …


Square Root - the Opposite of Square

            A number that when multiplied by itself, gives the number


                                    Symbol: √ 

       

5 -->         square 52       --> 25

                        5 <--    Square root 25  <-- 25


Example

(1) 16 = 4 x 4

     √16 = 4


(2) a2 = 25        

      a = + √5 x 5 =    = +5             


Why +5 when a number is square-root?

   (-5) x (-5) = 25 ( -ve x -ve = + ve)

    5 x 5 = 25

  => 25 = (-5)2 = 52 = 25

       a2 =  + √a x a = -a or a


Cube - Power of 3 : 3

- Multiplying the number by 3 times

Example:

(1)        Cube of 3 = 33 = 3 x 3 x 3 = 27                                

(2)        43 = 4 x 4 x 4 = 64

(3)        cube of (-5) 3 = (-5) x (-5) x (-5) = = -125                             


Cube Root

            A value that when ‘cubed’ gives the original number


                        Symbol: 3


4 -->        cube 43         --> 64

                4 <--  cube root 364    <-- 64


Example: 

                  3√8 = 3√2 x 2 x 2 = 2

              3√216 = 3√6 x 6 x 6 = 6


Index Notation

  • Representing number/letters that multiplied themselves a number of time

Example 

Write 18 in index notation

Using LCM : 

                     2   |  18  (smallest divisible no=2, 18/2=9 , place 9 below)

                     3   |    9  (next smallest no to divide:3)

                     3   |    3  (divide by 3, till = 1)

                              1

 The index notation of 18 = 2 x 3 x 3     

                                        = 2 x 32


Example

Write 40 in index notation

Using LCM : 

                     2   |  40  (smallest divisible no=2, 40/2=20 , place 20 below)

                     2   |  20  (next smallest no to divide:2)

                     2   |  10  (next smallest = 2)

                     5   |  5     (next smallest = 5, till = 1)

                             1

 The index notation of 40 = 2 x 2 x 2 x 5    

                                        = 23 x 5


STANDARD FORM  (S3/NA/T)                                                                            


            K x 10m   where K is between 1 to 9      1 <= K < 10


Example: 

Change 123.5 to standard form


Step 1: Change number to 1 <= k < 10                         

            123.5 = 1.235 x 100 

Step 2: Change to 10n 

            100 = 102


Step 3: Answer in standard form

            123.5 = 1.235 x 102


Example: Change 0.0012 to standard form

                       

            0.0012 = 1.2 x 0.001 (Step 1: Change number to 1 <= k < 10)

   

               0.001 = 10-3       (Step 2: Change to 10n )


         0.0012 = 1.2 x 10-3 (Step 3: Answer in standard form)


Practice

1. Calculate (6.2 x 103) x (1.5 x 106). Give your answer in standard form.


2.   Find the value of 

      (a) 83

      (b) 5-2


3.  Write 0.0000567 in standard form.


4.   Calculate 6.1 x 106 + 1.4 x 107. Give your answer in standard form.


5.   Find the value of 24 + 52


6.   Write the number 315.17

     (a)  in standard form

     (b)  correct to one decimal place

     (c)  correct to the nearest 10.


7. Write 4.67 x 106 as an ordinary number


8. Calculate (6.2 x 103) x (1.5 x 106). Give your answer in standard form.


9.  Write the number 3.6148 correct to

      a.  4 significant figures

      b.  2 decimal places