Monday, 20 January 2020

S1T1 Numbers and Orders of Operations

Recap:

1.  Positive number are numbers greater than 0 

2.  Negative numbers are less than 0

3.  Zero 0 is neither positive or negative


Also,

1.  When there is no sign ’attach’ to a number => the number is positive   

                        2 + 3 = 5; 

            2, 3 and 5 are all positive numbers


2.  The sign + , - ‘belongs’ to the number on the right

         Example:

              -2 (negative 2),

               5 + (-3) is 5 (positive 5) + (add) (-3) negative 3


Number Operations

The four number operations are 


                  Symbol.         Some Words/phrases

                       +                 add, sum, plus, total, more than, increased by

                        -           subtract, difference, minus, r less than, decreased

                        x           multiply, product, times 

                      /, ÷               divide, quotient


* Negative number is NOT  – MINUS a number 

           5 + (-3) = 2   is positive 5 add negative 3 

                        5 – 3 = 2   is positive 5 minus positive 3   

             5 + (-3) = 5 - 3 


Addition                                                        
 (1) (+) + (+)              a + b = b + a                                                                                          
                          8 + 5 = 5 + 8 = 13                                         
            
(2) (+) + (-)                a + (-b) = a – b
                          8 + (-5) = 8 – 5 = 3

(3) (-) + (+)                -a + b =  b – a
                                  -8 + 5 = 5 – 8 = -3

(4) (-) + (-)                 -a + (-b) = -a – b                                                                                  
                                  -8 + (-5)= -8 – 5 = -13                                              
Subtraction
(1) (+)  (+)                a – (+b) = a – b                                                                                 
                          8 – (+5) = 8 – 5 = 3                                      

(2) (+)  (-)                 a – (-b) = a + b
                           8 – (-5) = 8 + 5 = 13

(3) (-)  (+)                 -a – (+b) = -a - b                                                                                  
                                       -8 – 5 = -13             [ -(8 + 5) = -13]                                  

(4) (-)  (-)                 -a – (-b) = -a + b = b – a
                                  -8 – (-5) = -8 + 5 = -3   [-5 + 8 = -3]
Multiplication
(1) (+) x (+)                a x b = ab                                                       
                                   6 x 5 = 30                                                      

(2) (+) x (-)                 +a x -b  -ab
                                      6 x -5 = -30  

(3) (-) x (+)                 -a +b = -ab       
                                     -6 x 5 = -30

(4) (-) x (-)                  -a x -b  = +ab                                                              
                                     -6 x -5 = 30                                                                                       
Division
(1) (+) x (+)                a ÷ +b = a/b                                                  
                                     6 ÷ 2 = 3                                                     

(2) (+) x (-)                 +a ÷ -b  -a/6
                                    -6 ÷ -2 = -6/2 = 3

(3) (-) x (+)                 -a ÷ b = -a/b  
                                    6 ÷ -2 = -6/2 = -3

(4) (-) x (-)                    -a ÷ -b  = ab                                                   
                                     -6 ÷ -2 = 6/2 = -3                                                    

Explanation for positive and negative numbers multiplications

                   a x -b = -ab 

               5 x -2 = -2 + (-2) + (-2) + (-2) + (-2)

                             = -10

    => + x - = -


Negative number and negative number multiplications

-5(0) = 0

             -5 [ 3 + (-3) ]    = 0

             -5 x 3 + -5 x -3 = 0

             -15 + (-5)x(-3)  = 0

       (-5) x (-3) must be equal to 15 for -15 + (-5) x (-3) = 0

           => -5 x -3 = 15

           => - x - = +


Order Of Operations


  First Order : (  )  e      Bracket   Exponential             BE / BO (e.O – Order)            


  Second Order : ÷ X    Multiplication And Division     DM


  Third Order : +   -       Addition And Subtraction       AS


[ B E D M A S] / [B O D M A S]


Do the question by: (1) completing all FIRST order


                                (2) follow by all SECOND order,


                                (3) and then the THIRD order


Step 1: Write BODMAS and Underline by the ORDER 

Step 2: Do calculation using order

Step 3: Repeat step 1-2 until question is solved. 


** Order within bracket -> must follow order as well


Example

Find the value of:

            9 + 3 x 4 – (3 + 5) ÷ 2


  BODMAS        (Step1 : Write BODMAS)

          9 + 3 x 4 – (3 + 5) ÷ 2        (Underline by Order)

       = 9 + 3 x 4 – (8) ÷ 2                (Step 2 : Do calculation) 

       = 9 + 3 x 4 –   8 ÷ 2                 (Step 3 : <<do ÷ and x>, repeat step 1-2> )

       = 9 +12   –    4                         (Step 3 :  <do + and - > )

       = 21 – 4 = 17          


Example:

Calculate       24 ÷ 4 x 5 ÷ 6 


[For computation with only the same order, working from left to right]

  BODMAS          (Step 1)

  24 ÷ 4 x 5 ÷ 6         [ all are 2nd order - Do from left to right ]


                =    6 24 x 5              (Step 2)

                          4     6              [ Write ÷ as a denominator]

                        = 5


Example:

Calculate       25 + 144 – 2 x 5 x 12                      [15/1/5a/1]


                           (BEDMAS)

                            25 + 144 – 2 x 5 x 12   (Step 1)

                         = 25 + 144 – 120     (Step 2)

                         = 25 + 144 – 120              (Step 3)

                         = 169 – 120                      (Step 3)

                         = 49


Example

Estimate the value of 39.68 x 21.8 / (4.003)2

                       39.68 x 21.8 / (4.003)2.   (Step 1 : Round Each Number)

                        ~ 40 x 24/ 42

                       = 40 x 24 / 16               (Step 2 : Do x / + -)

                        = 10 x 6

                        = 60


Time Zone Variation (NT - for -ve no. problems)

There are 24 time zones from UTC -11 to UTC + 12. 

[UTC=Coordinated Universal Time]


Example

United Kingdom is at UTC 0,  Singapore is at UTC 8 and New York is at UTC -5


There are two types of notation for time:

 - 12-hour notation using a.m. and p.m 

 - 24-hour notation using 0000 to 2359


Example:

Singapore is at UTC +8, Paris is at UTC +1 and San Francisco is at UTC -7

(a) It is 2p.m at Paris, what is the time in Singapore?

(b) What is the time difference between Singapore and San Francisco?


(a)

Step1: Find the difference between Paris and Singapore

UTC 8 - UTC 2 = 6

Step2: Add 6 to Paris time

2 + 6 = 8pm

Step3: Answer 

Singapore time is 8 p.m


(b)

  UTC 8 - (-7) = 8 + 15                   (Step 1)

The time difference is 15 hours   (Step 2)


Practice
1.    55 – (-4) – 26 = 
2.    35 – (-24) + (-43) =
3.    24 ÷ 8 x 7 = 
4.    5 x 3 ÷ 8 x 12 =
5.    -5 x 3 x 2 =
6.    5 x -3 ÷ 8 x (-12) =

7.  Find the following without using the calculator.
a.         [-44 – (-23)] x (8 -3)]                             
b.         300 ÷ 4 + [(-3)2 + (-24)] 
c.         - [365 + (-217)] x (3 – 7)} + 30              
d.         -64 + 81 + [(-1)100 – (-3)]
e.         -3 – 9 x -3 + 20 x (36 + 2)      
f.          -2 x (-3) – 3 x 5 x (-2)