Monday, 20 January 2020

S0T1 Four Operations on Fractions

<<Recap/Refresh>>
Equivalent Fractions (Fractions with the same values)
Example
            1 = 2 = 3
            2    4    6

Reducing Fractions to its lowest terms
Example
Reduce 12 / 16 to its lowest term

Step1: Break the numbers to its factors
 15 = 3 x 4
 20 = 4 x 4
Step2: ‘strike’ out the common factors
15 =  3 x 5
20 = 4 x 5
Step3: Answer
15 = 3
20 = 4

Mixed numbers and Improper Fractions

Mixed number is a whole number and a fraction written together.


Eg: 5 ½


Improper Fraction : the numerator is greater than or equal to the denominator


Eg: 8/7    ,     2/2   , 9/4


Converting mixed number and improper fraction

Example

Convert 2  ½ to improper fraction

Step 1 : Multiply the whole number with the fraction's denominator

2 x 2 = 4


Step 2 : Add the number to the numerator

4 + 1 = 5


Step 3 : Write the improper fraction - the added number / the denominator

          5 / 2


Example

Convert 17/5 to mixed number


Step 1 : Divide the improper fraction with remainder

123/ 5 = 3 with remainder 2


Step 2 : Write the proper fraction with the remainder as the numerator

2/5

Step 3 : Write the mixed number 


Comparing and Ordering Fractions
Example
Which fraction is greater, 2/5 or 3/5?
Step 1: Convert denominator to same value. Yes

Step 2: Which has a greater numerator value? 3

Step 3: Answer 
            3/5 > 2/5

Ascending and Descending Order
Example
Arrange the fractions 1/2, 2/5, 3/10 in ascending order.

Step 1: Convert denominator to same value
            Common factor for denominator is 10
            ½ = ½ x 5/5 = 5/10, 2/5 x 2/2 = 4/10, 3/10

Step 2: In ascending order => Arrange numerator value from small to big 

Step 3: Answer 
            3/10, 2/5, ½

(2) Converting Decimals and Fractions
Decimals to Fractions
Example
Convert 0.6 to fractions in the lowest terms

Step: Change to fractional part base on decimal place value, 10th = /10
0.6 = 6/10
      = 3/5

Fractions to Decimals
Example
Convert 1 12/60 to decimal

Step1: Reduce fraction to lowest term
         1 121/605
      = 11/5

Step2: Use either long division or convert fraction to 10s base
      = 1 1x2/5x2
      = 1 2/10

Step3: Answer in decimal form
      = 1.2

 [** Use the sรณD button on calculator to convert between a decimal and a fraction]

Compare Fractions and Decimals
Example
Arrange the following in descending order
       0.6, 4/5, 3/4

Step 1: Convert fractions to decimals (with a calculator)
      0.5, 0.8, 0.75

Step 2: Arrange the numbers using place values position
       0.6
       0.8
       0.75

Step 3: Compare and Answer
[Descending – from big to small]
0.8, 0.75, 0.6

Addition and Subtraction of Fractions
** Always reduce the final answer to the lowest terms (when there are common factors in the numerator and denominators

Example
Evaluate the following.
             2 + 3
             3    4
Step 1: Convert to same denominator. 
            2 x 4= + 3x3=9
            3 x 4=12   4x3  12

Step 2: Add the numerator
            8 +  9 = 17
            12   12   12      
Step3: Answer and reduce to lowest term
             17/12 = 12/12 + 5/12
                       = 1 5/12

Multiplication of Fractions
            a x c = ac
            b    d    bd

Example
Evaluate    2 x 3
                  5    8    
Step1: Any common factors to reduce
             21 x 3
             5     84             
Step2: Multiple the numerator and denominator
            = -1x 3             (-ve x +ve = -ve)
                5 x 4
Step3: Answer in lowest term
            = -3/20

To avoid mistake, always change a mixed number to improper fraction, then do the multiplication.

Division of Fractions
When we divide by a fraction, we multiply by the reciprocal of fraction => dividing by 3 = multiply x 1/3

Example
Evaluate -4 ÷ 2
                9    3
Step1: ‘Convert’ ÷ to x and flip fraction to right of ÷
            = -4 3
                 9   2
Step2: Reduce to lowest term
            = -42 31
                 93    21
Step3: Check +/- sign and answer
            ** + x - = -
            = -2/3

<<To avoid mistake, always change a mixed number to improper fraction, then do the multiplication>>

Combined Operations on Fractions
** The same rules of the order of operations apply
For Fractions
Do the numerator and the denominator of a fraction separately first.
                  a + b x c = a + bc                  2 + 3 x 5 = 2 + 15 = 17
                    c x e           ce                        3 x 6        18          18
Example:
Calculate
                  1 + 2  – 5 – 3
                     3        5 x 2
Step 1: Write ORDER and Underline Operation BY ORDER 
              (BEDMAS)
              =  1 + 2  – 5 – 3
                     3        5 x 2
Step 2Do calculation using operation rules
              =  1 + 2  – 5 – 3
                     3        10
              =  1 + 2  – 2
                     3       10
Step 3Repeat step 1-2 until question is solved. 
              =   3  –   2
                    3      10 5
              = 1 – 1/5
              = 4/5
Example
Evaluate the following.
            2 - 1/4 ÷ (2 1/3 – 1 5/6)
Step1: Any bracket? First order of operation
               2 – ¼ ÷ (2 1x2 / 3x2 – 1 5/6) [change denominator to same value]
            = 2 – ¼ ÷ (2 2/6 – 1 5/6)
            = 2 – ¼ ÷ (14 /6 – 11/6) [change to improper fraction to - ]
            = 2 – ¼ ÷ (3/6) 
            = 2 – ¼ ÷ ½ [reduce to lowest term]
Step2: Any x ÷ ? Do
            = 2 – 1/42 x 21 [‘flip’ ÷]
Step3: Any + - ?
            = 2 – ½
            = 1 ½

Practice

1.  Arrange the following fractions in ascending order

a.       1/2,  1/4,  1/5,  1/3

b.       2/5,  5/6,  1/2,  3/4


2.   Arrange the following fractions in descending order

a.      1/10, 3/4, 3/5,  1/2

b.       1/4,  1/6, 1/2,  1/3  


3.   Evaluate the following:

a.   -(-¾)              b. +(-)                c.  x (-½)

d.    3/8 ÷ 1/3      e.  (-1/5) x (-10/7)      f.   (1/5) ÷ (-3/10)


4.   6 + (2/5 - 1/10) ÷ (-1/10)


5.   2 + 2/3 x (-1/4 + 1/8)


6.  Calculate 4.53 – 1.18                [12/p2/1b/1]
                        6.13 – 2.39

7.   Calculate 5.63 x 23.8               [09/2/1a/1]
                       12.7 + 3.21

No comments:

Post a Comment

Note: only a member of this blog may post a comment.