Expansion usually involves removing the bracket.
=> a (b + c) = ab + ac
Use of Bracket and Order of Operations
Property:
a ( b + c) = ab + ac
Example
3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3
The preferred written form is 3(x + y)
1/2 ( p + q) = p + q
2
Similarly,
½ ( u + v ) = (u + v) = ½ u + ½ v
2
Example
(i) Expand 4 (a + b)
= 4 x a + 4 x b
= 4a + 4b
(ii) Expand 4 + a
5
= 1 x (4 + a)
5
= 4 + 1 a
5 5
= 4 + a
5 5
Use of:
1. (a + b)2 = (a + b) x (a + b) = a x a + a x b + a x b + b x b = a2+ 2ab + b2
=> (a + b)2 = a2 + 2ab + b2 = (b + a)2
2. (a - b)2 = (a - b) x (a - b) = a x a + a x (-b) + (-b) x a + (-b x -b)
= a2 -ab -ab + b2 = a2 - 2ab + b2
=> (a - b)2 = a2 - 2ab + b2
3. a2 – b2 = (a + b) x (a - b) = a2 -ab + ab + b2 = a2 - b2
=> a2 – b2 = (a + b) x (a - b)
To remember:
(a + b)2 = a2 + 2ab + b2 = (b + a)2
(a - b)2 = a2 - 2ab + b2
a2 – b2 = (a + b) x (a - b)
22 = 4 32 = 9 42 = 16 52 = 25 62 = 36
72 = 49 82 = 64 92 = 81 102 = 100 112 = 121
=> a (b + c) = ab + ac
Use of Bracket and Order of Operations
Property:
a ( b + c) = ab + ac
Example
3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3
The preferred written form is 3(x + y)
1/2 ( p + q) = p + q
2
Similarly,
½ ( u + v ) = (u + v) = ½ u + ½ v
2
Example
(i) Expand 4 (a + b)
= 4 x a + 4 x b
= 4a + 4b
(ii) Expand 4 + a
5
= 1 x (4 + a)
5
= 4 + 1 a
5 5
= 4 + a
5 5
Use of:
1. (a + b)2 = (a + b) x (a + b) = a x a + a x b + a x b + b x b = a2+ 2ab + b2
=> (a + b)2 = a2 + 2ab + b2 = (b + a)2
2. (a - b)2 = (a - b) x (a - b) = a x a + a x (-b) + (-b) x a + (-b x -b)
= a2 -ab -ab + b2 = a2 - 2ab + b2
=> (a - b)2 = a2 - 2ab + b2
3. a2 – b2 = (a + b) x (a - b) = a2 -ab + ab + b2 = a2 - b2
=> a2 – b2 = (a + b) x (a - b)
To remember:
(a + b)2 = a2 + 2ab + b2 = (b + a)2
(a - b)2 = a2 - 2ab + b2
a2 – b2 = (a + b) x (a - b)
22 = 4 32 = 9 42 = 16 52 = 25 62 = 36
72 = 49 82 = 64 92 = 81 102 = 100 112 = 121
No comments:
Post a Comment
Note: only a member of this blog may post a comment.