Thursday, 30 April 2020

Primary Maths : Notes and Formulae

WHOLE NUMBERS
Place Values

Value is the positional value of the digit in the number or where the digit is in the number.  Example: tens, thousands

Digits are symbols or characters to represent a number in writing. 

Example: What is the value of the digit 4 in 854013?

    854 013             Step1: Underline 4     

    4000                  Step2: Replace number to right of 4 to 0  

          

Odd number

Numbers ending with 1, 3, 5, 7, 9    Examples: 7, 15, 129

Even number

Numbers ending with 0, 2, 4, 6, 8    Examples: 2, 10, 1356


Rounding

Rule for rounding off

If number is from 0 and to 4, then DROP or Fall (4) off / let it go  

Example: Round 193 to the nearest 10. 3 is less than 4, => 190

If number is from 5 to 9, then ADD 1 or high 5 --> go higher

Example: Round 195 to the nearest 10. 5 is more than 4, => (19+1=20), 200

Estimate

Rounding numbers is a way of estimating numbers


Dividing Whole Numbers By Tens, Hundreds, And Thousands

When any whole number is DIVIDE by 10, 100, or 1000, ‘cancel’ the corresponding 0s

Example: 500000/100 = 500000/100 = 5000


Quotient And Remainder

 There are special names for each number in a division.

                                  12 ˜ 4         = 3

dividend ˜  divisor = quotient

Factors

Factors are numbers that divide exactly into another number.

The factors of 12, for example, are 1, 2, 3, 4, 6 and 12.

Multiples

Multiples are extended times tables

The multiples of 2 are all the numbers in the 2 times table:
2, 4, 6, 8, 10, 12  ...   The fifth multiple is 10


Order of Operations

FIRST Order      :  (  ) /P2         Bracket  u2 = u x u                                 

SECOND Order :  ÷ x              Division and Multiplication    

THIRD Order     :  +   -            Addition and Subtraction      


Measure and Compare

Smallest, Largest

Smallest: of the least value as compared to others

Largest: of the biggest value as compared to others 


Vocabulary

Naming Position/Words

First (1st), second (2nd), third (3rd) , Fourth (4th), … tenth(10th)

Between, odd number, even number, left, altogether, twice, thrice


Equal/Add/Subtract/Multiple/Divide 

Equal:  value of, same as, answer, represents, means, will be, whole lot

Add: more than, total, sum of, increase, plus, additional, and

Minus: take, decrease, subtract, remove, subtraction, take away, pull, difference, less than, take

Multiplication: multiply, times, lots of, by, product of, of, power of, bracket () = square

Division:  the fraction line -, divide, /, split, group, out of, give


Compare and Order

(1)   Great/greater/greatest; as great as, greater than 

(2)   Small/smaller/smallest; as small as, smaller than

(3)   Many/More/Most; as many as, more than        

(4)   Little/Less/Least; as little as, less than

(5)   Few/Fewer/Fewest; as few as, fewer than

(6)   Long/Longer/Longest; as long as, longer than                      

(7)   Short/Shorter/Shortest; as short as, shorter than

(8)   Tall/Taller/Tallest, taller than, as tall as   

(9)   Heavy/Heavier/Heaviest; as heavy as, heavier than

(10) Light/Lighter/Lightest; as light as; lighter than

(11) Decreasing / Increasing


Additional Words

Exchange, Transfer, Age, Equal at the start, Finally, Increase by,  Altogether


FRACTIONS

Numerator  -> part

Denominator -> whole

Proper Fractions

        1  ,   3    ,    6       numerator is less/smaller than

        3      7         9      denominator      

Improper Fractions

        3  ,    8    ,    22       numerator is more/bigger than

        2       7          9      denominator      

Mixed Number

        8 ½   A whole number with a proper fraction

Lowest Term

       1/2, 3/5, 6/7 Cannot be reduced anymore

Equivalent Fractions

Representing the same number/fraction.

->    1  =  2    =   3   =     4   =   5   =       =  7     =   8   

        3      6         9        12      15      18        21        24       


Add/Subtract Like Fractions (same denominators)

- Add or subtract the numerators 

- Do not add/subtract the denominator (it indicates the total portion)

Example           3 + 4 = 7               5 - 2  = 3

                          9    9    9               7   7     7


Add/subtract Unlike Fractions (Different denominators)

Example

2 + 1  =   2 x 3   +  1 x 5    

         5    3       5 x 3       3 x 5                 Step1: Convert to same value (equivalent)

          =   6   + 5   = 11                   Step2:  Add or subtract the NUMERATOR

       15    15     15     


Multiplying fractions

What is ⅖ of ¾?   <of Multiply>

             2    x    3

             5          8 4                       (1)2 is common for 2 and 8      

       =    1    x    3   =  3

             5          4      20

Dividing Fractions

             a     ÷    c             1  ÷    9                Step1: Invert the fraction after ÷ sign

  b           d       2        4

= a     x    d              x   4  2  =     Step2 : reduce to the lowest term

  b           c       2         9           9 

<<Convert mixed number to improper fraction before division / multiplication>>


Compare Fractions

By Same Denominators

4/7 , 1/7 , 3/7 => 1/7 , 3/7, 4/7 Smallest numerator (smallest), biggest numerator (largest)

By Same numerators 

9/4 , 9/7 ,9/13 => 9/4 , 9/7, 9/13 Smallest denominator (largest), biggest numerator (smallest)

Different numerators/denominators - convert to either same numerator or denominator and compare


Vocabulary
halves, quarters, fifths, tenths, whole, part

DECIMALS
In the number 17.3, the point separates 17 from the 3. 
3 is in the tenth position. 
=> 3 of tenths = 3 of 1/10 = 3/10 
As a fraction, 17.3 = 17 3/10 
Decimal Numbers Multiply/divide By 10s, 100s, 1000s
- MULTIPLY : the decimal value shifts by number of 0s to the RIGHT.
- DIVIDE : the decimal value shifts by number of 0s to the LEFT.

Vocabulary

Money

(1) Expensive/More Expensive/Most Expensive; as expensive as

(2) Cheap/Cheaper/Cheapest; as cheap as, cheaper than

(3)  Mary receives a Change of $20.

(4) Judy’s saving is 80cents.


PERCENTAGE

"Percent %" means  'out of 100'  or  ‘per 100 of the total value’

Converting Fraction and Decimal to Percent (Multiply by 100)

Example: Express 1/2 as percentage

½ x 100 = 50                         Step 1: Multiply by 100

1/2 as percent is 50%           Step 2: Express the fraction as percent

 Example: Convert 0.345 to percent

   0.345 = 0.0345 x 100% = 34.5%.   Step: Move Decimal point 2 places to the right


Converting %  To Fraction and Decimal (Divide by 100) 

Example: Percent can be expressed as  #/100

    40% is 40/100 = 4/10 = 2/5

Formula

Percent = (Required) Value   x 100%

        Total Value

  GST = Amount x GST rate

                100

   Increase/Discount = Original Price x Percent Discount/increase


RATIO
It is represented by TWO or more numbers with a colon:
            Number1: Number2
The ratio’s position of the numbers is important -> 1:2 is not 2:1 
Ratio is comparison of numbers, there is no unit of measure.
Comparing more than 1 ratios
1 : 2 : 5
Equivalent Ratio
   1 :  2 ,    2 : 4,    4 : 8
Ratio in its simplest form
     2 : 4 =  1 : 2 <= simplest form (similar to lowest term in fractions)

Ratio and Fractions

A fraction is a part of a whole.


SPEED
   Distance(D) = Speed (S) x Time (T)
            Speed = Distance / Time
              Time = Distance / Speed

ALGEBRA

Simplifying Algebraic Expression

Example

Simplify 4f + 3g -2f +4g

4f   +3g   -2f    +4g.        Step 1 Underline with +/- on left 

       =    4f    - 2f   + 3g  + 4g       Step 2 GROUP the different shapes together

       =   2f + 7g.                           Step 3 SIMPLIFY expression


Solving Equation

Example

Solve 12 = U + 5

    L = R                     Step 1: WRITE L=R putting variable to left side

          12 = U + 5

    U + 5 = 12

    U + 5 – 5 = 12 – 5          Step 2: Move all numbers to right

                  U = 12 - 5

                  U = 7     Step 3: Solve


Finding The Value Of An Equation

When the variable is given a value, replace the variables with the value.

Example

Find the value of the equation when A = 4

(1) 4 + A 

= 4 + 4 (replace A with A = 4) 

= 8


Number Patterns

Usually in the form of structured series of numbers in uniform changes

Position(Term)           1     2      3     4      5 .... N  

                                  2 ,   5  ,   8  , 11 , 14 .... nth term  <Common pattern> 

(2 = a(1st)                   +3    +3   +3    +3       (d= difference between 2 numbers =3)

Formula/Equation:   Nth term = a + (n - 1)d

Example: What is the value of the 11th term ?

  15th term = 2 + (11 - 1) x 3 = 32


MEASUREMENT
Mass - Kilogram(kg) and Gram(g)
                    1 kg = 1000 g
        kg     ( x 1000)   g              Eg:   2kg = 2 x 1000 = 2000g 
                                   -------->
Gram (g) to Kg
                             kg       (/1000)     g                   800g = 800/1000 = 0.8kg 
                                   <------------
Converter=   (divide) / <-   kg (1000) g  -> x (multiply)

Length : From km to m to cm to mm
km      (x1000)      m      (x100)   cm   (x10)   mm     
                   ---------->              -------->                ------>
         1km        =      1000m        =     100000cm    = 1000000 mm                 

From mm to cm to m to km 
km      (x1000)      m      (x100)    cm   (x10)   mm           
                 <----------             <--------                  <------
  
Converter=   (divide) / <-   km m(1000) cm(100) mm (10)  -> x (multiply)

Time

Commonly Used Terms


12 hour format                     24-hour format

- : (.) with a.m., p.m              4-digit format, no a.m. p.m.

Examples:

12-hr clock    24 hr clock          12-hr clock    24 hr clock   

 12:00 a.m.       00 00                     12:00 p.m.       12 00                     

   3:15 a.m.       03 15                      3:30  p.m.       15 30

 10:30 a.m.       10 30.                   10:45 p.m.        22 45          <24 00 = 00 00 the next day>>


Vocabulary

1. O’clock 2. Midnight 3. Morning

4. Noon 5. Afternoon 6. Night

7. a.m. 8. p.m. 9. Hour

10. Minutes 11. Seconds 12. Earlier

13. Later 14. Before.             15. After

16. Minutes past 17. Minutes to 18. Quarter past

19. Quarter to 20. Half past 21. Clockwise

22. Anti-clockwise 23. Starting time 24. Finishing time

25. Duration 26.      Slower             27. Faster

Examples - quarter past 3 => 3:15 (quarter of 60mins), half past 5 => 5:30


SHAPES
Rectangle and Square
Triangle

Perimeter = adding the three sides
Area of Triangle = ½ x Base x Height



Angles

Lines

Type of Triangle Angles



Other Angles Formulae



Quadrilaterals
<<< tri ~ 3 , quad ~ 4, cir ~ round >>>

Line of symmetry

A line that divides a shape into  two identical, reflected halves.



STATISTICS
Drawing and Understanding Graph

Same set of Data in TABLE FORM:

 

Fruit

Numbers

Apple

  1

Pear

  2

Orange

  2

Banana

  3

Total

10

  

 

 

 

 

 

 
Average
Formula
       Average = Total Amount / Value 
                         Count of shares/items