Recap
To solve for x, we ‘put’ x on the LHS (left-hand-side) and the number value to the RHS (Right-hand-side),
and we find the value of x.
Example 
            Solve for 7x + 3 = 17
                           7x = 17 – 3
                                = 14
                             x = 14/7 = 2
Solving Quadratic Equation
(1)  What is the meaning of  Solve x2 + 3x + 2 = 0
=> to find the values (two or less) of x where it will make the equation = 0.
(2) Any number multiply by 0 is equal to 0.
=> For any (x + a)(x – b) = 0, as long as any one of (x + a) or (x – b) = 0, equation is solved because 
When x = -a
             (-a + a)( x- b) 
            = 0 x (x – b) = 0
When x = b
             (x+ a)( b - b) = 0 
              = (x + a) x 0 = 0
             = 0
(3) Solving the quadratic equation
            (x + P)(x – Q) = 0
        When (x + P) = 0
x + P = 0
x = -P
When (x – Q) = 0
    x – Q = 0
    x = Q
Values of x are 
         x = -P or x = Q
Quadratic equations are usually solved by putting the equation into the form
         (Jx + P)(Kx + Q) = 0 where J, K, P and Q are numerical values.
A quadratic equation can have 0, 1 or 2 values.
Recap : Factorisation  (x 2 + bx + c)
Factorise x 2 + 5x + 6
=> To find P and Q where   x 2 + bx + c = x 2 + 5x + 6 = (x + P)(x + Q)
     => b = 5 = P + Q, c = 6 = PQ 
Step 1 : Draw the cross X
	<< Since is it x2  , fill in x2 >>
                     x                [What is P?]
                            \ /
                            / \
                      x               [What is Q?]
Step 2 :  Find factors of c (P X Q) for b (P + Q)
When there is more than 1 set of factors,
Find the factor of c = 6 (P x Q)
	6 = 1 x 6, 
          = 2 x 3
Using the X to cross-multiply, 
                     x          2                   x        1
                           \ /                             \ /
                           / \                             / \
                      x         3                    x        6
 x x 3 = 3 x, 2 x x = 2 x                x x 1 = 3 x, x x 6= 2 x
	2 x + 3 x = 5 x                               x + 6 x = 7 x	
	P = 2 , Q = 3
Step 3 : Factorise
  =>              (  x        +2 )       
                            \ /
                            / \
                      ( x         +3)
	
 Thus,
                 x 2 + 5x + 6 = (x + 2) (x + 3) 
 
Solving Quadratic Equation by Factorisation                                    
 
Example:
Solve y2 + 3y + 2 = 0
            (y + 2)(y + 1) = 0                       By Factorisation     y  \  /        2
            (y + 2) = 0 or (y+ 1) = 0                                           y   /  \        1
            y = -2 or y = -1
Solving by Formula
For Equation:         ax2 + bx + c = 0
         formula x = -b +   √b2 – 4ac
                                          2a
Example:
Solve 2x2+ 6x + 1 = 0              (ax2 + bx + c = 0)
a = 2 , b = 6, c = 1
                      x = -6 +   √62– 4 x 2 x 1
                                         2x2      
                        = -6 + √28
                                    4
                        = -6 + 2/4√7
                        = -6 + 7/2
 
No comments:
Post a Comment
Note: only a member of this blog may post a comment.