Wednesday, 1 April 2020

S3T3 Solving Quadratic Equations by Factorisation/Formula

Recap
To solve for x, we ‘put’ x on the LHS (left-hand-side) and the number value to the RHS (Right-hand-side),
and we find the value of x.
Example 
            Solve for 7x + 3 = 17
                           7x = 17 – 3
                                = 14
                             x = 14/7 = 2

Solving Quadratic Equation
(1)  What is the meaning of  Solve x2 + 3x + 2 = 0
=> to find the values (two or less) of x where it will make the equation = 0.

(2) Any number multiply by 0 is equal to 0.
=> For any (x + a)(x – b) = 0, as long as any one of (x + a) or (x – b) = 0, equation is solved because 
When x = -a
             (-a + a)( x- b) 
            = 0 x (x – b) = 0
When x = b
             (x+ a)( b - b) = 0 
              = (x + a) x 0 = 0
             = 0

(3) Solving the quadratic equation
            (x + P)(x – Q) = 0
        When (x + P) = 0
x + P = 0
x = -P
When (x – Q) = 0
    x – Q = 0
    x = Q
Values of x are 
         x = -P or x = Q

Quadratic equations are usually solved by putting the equation into the form
         (Jx + P)(Kx + Q) = 0 where J, K, P and Q are numerical values.

A quadratic equation can have 0, 1 or 2 values.

Recap : Factorisation  (x 2 + bx + c)

Factorise x 2 + 5x + 6

=> To find P and Q where   x 2 + bx + c = x 2 + 5x + 6 = (x + P)(x + Q)

     => b = 5 = P + Q, c = 6 = PQ 


Step 1 : Draw the cross X

<< Since is it x2  , fill in x2 >>

                     x                [What is P?]

                            \ /

                            / \

                      x               [What is Q?]


Step 2 :  Find factors of c (P X Q) for b (P + Q)

When there is more than 1 set of factors,

Find the factor of c = 6 (P x Q)

6 = 1 x 6, 

          = 2 x 3


Using the X to cross-multiply, 

                     x          2                   x        1

                           \ /                             \ /

                           / \                             / \

                      x         3                    x        6

 x x 3 = 3 x, 2 x x = 2 x                x x 1 = 3 x, x x 6= 2 x

2 x + 3 x = 5 x                               x + 6 x = 7 x


P = 2 , Q = 3


Step 3 : Factorise

  =>              (  x        +2 )       

                            \ /

                            / \

                      ( x         +3)

 Thus,

                 x 2 + 5x + 6 = (x + 2) (x + 3) 



Solving Quadratic Equation by Factorisation                                    
Example:
Solve y2 + 3y + 2 = 0
            (y + 2)(y + 1) = 0                       By Factorisation     y  \  /        2
            (y + 2) = 0 or (y+ 1) = 0                                           y   /  \        1
            y = -2 or y = -1

Solving by Formula

For Equation:         ax2 + bx + c = 0
         formula x = -b +   √b2 – 4ac
                                          2a
Example:
Solve 2x2+ 6x + 1 = 0              (ax2 + bx + c = 0)
a = 2 , b = 6, c = 1
                      x = -6 +   √62– 4 x 2 x 1
                                         2x2      
                        = -6 + √28
                                    4
                        = -6 + 2/4√7
                        = -6 + 7/2


No comments:

Post a Comment

Note: only a member of this blog may post a comment.