Tuesday, 21 April 2020

S3TN Completing the Square, Graphical Method - Quadratic Equations

Solve by Completing the square

Completing the square "change" the equation from 

    ax2 + bx + c = 0  =>  (x + d)2  = e.  where d and e are numerical.


     ax2 + bx + c = 0

Divide the equation by a

=> x2 + bx/a + c/a = 0


 Applying (x + ky)2 = (x +k/2)2 - (K/2)2       


     (x + b/2a)2 - (b/2)2 + c/a = 0

      (x+ b/2a)2 = (b/2)2 - c/a


Solving the equation for x:

       

       x + b/2a = + √ (b/2)2 - c/a

       x = -b/2a + √ (b/2)2 - c/a

       x = -b/2a + √ (b/2)2 - c/a  

  Or x = -b/2a - √ (b/2)2 - c/a


 Formula : ax2+ bx + c = a(x+ b/a)2– (b/a)2+ c/a = 0


                          (x+ b/2a)2 = (b/2a)2  - c/a


                     => x = -b/2a + √ (b/2)2 - c/a  Or 

                          x = -b/2a - √ (b/2)2 - c/a


Example

Solve 2x2+ 4x + 1 = 0

Using completing the square ax2+ bx + c = a(x+ b/a)2– (b/a)2+ c 

 2x2 + 6x + 1 = 2(x2 + 4x + 1/2) = 0

                     x2 + 4x + 1/2 = 0

(x + 4/2)2– (4/2)2 + 1/2 = 0

(x + 2)2 = (2)2 - 1/2 

(x + 2)2 = 4 – 1/2 

(x + 2)2 = 7/2

    x + 2 =  +√ 7/2 

         x  =  -2+√ 7/2 


x = -2 +  √ 7/2 or x = -2 -  √ 7/2


Graphical Method 

Using the above equation x2 + 4x + 1 = 0 to plot a graph,

















(x + 2)2 = 7/2

=> The minimum point is (-2, - 7/2) 


To solve 2x2+ 4x + 1 = 0 

=> y = 0


When y = 0

x = -2 +  √ 7/2 or x = -2 -  √ 7/2