Saturday, 1 February 2020

S1T1 Algebra Notation, Expressions and Formulae

Algebra: The use of letters (a, b, x, y, …) to represent numbers (or quantities)

               The letters are used to denote unknown numbers or variables.


Variables and Algebraic Expressions


Variables ~ letters to represent numbers that we don't know

Algebraic Expressions => numbers and letters that are connected by operations ( x / + -)


Example of Algebraic Expressions

Add y and 4  = y + 4


5 group of a  = 5 x a =  5a


Product of 5, a and b = 5 x a x b = 5ab


Divide y by 4 = y/


Example

Tina has $x at first. She spent $3 on a pen. 

a.   How much money is she left with?

x - 3


b.    Her sister gave her $5. How much money does she have?

x + 5


Equivalent Algebraic Expressions

Properties

   a + b = b + a

           a x b = b x a


Algebraic Expression can be written in different forms.


Example

x + 2 = 2 + x

1/2 ( p + q) = p + q

                                 2

 

Use of Bracket and Order of Operations

Property:


a ( b + c) = ab + ac


Example

 

3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3


The preferred written form is 3(x + y) 


Similarly,

½ ( u + v ) = (u + v) = ½ u + ½ v

       2

Example 

(i) Expand        4 (a + b) 

                     = 4 x a + 4 x b 

                     = 4a + 4b

            

(ii) Expand        4 + a

                            5          

                      =   1 x (4 + a) 

                           5                                 

                      = 4 + 1

                         5    5

                      = 4 + a

                         5    5


Example

Mary has $p in her wallet and $q in her pocket.

She spent half of the total amount of money and gave 20% of the total amount to her sister.

Write an algebraic expression for

(a) the amount of money that she spent

      Total amount = p + q

       Spent = 1/2 (p + q)


(b)  the amount to her sister 

             = 20% of total amount

             = 20/100 x (p + q)

     = 1/5 (p + q)


Square and Cube

Area of square of side p = side x side

                       = p x p = p2 , (not written as pp)

Similarly,

Volume of square = p x p x p = p3 


Example 

Write the equivalent Algebraic Expression of 

      2 x p x p x q

      = 2 p2 q


Example

A square has a length of p. 

Write an algebraic expression for 

(a) What is the total area of 6 such square?

     Area of square = p x p = p2    (Step1 : Write the formula)

              6 square = 6 x p2           (Step 2: other operations? => x 6)

             = 6p2 

(b)  What is the volume of the 6 squares?

       Volume of square = p x p x p = p3     (Step 1 : Write the Formula)

Volume of 6 squares = 6 x p3 = 6 p3 (Step 2 : Operation operations?)


Evaluating Algebraic Expressions and Formulas

Example

Simplify 5y – 2(y – 2)

            = 5y – 2y - 2 x -2 (Step1 : Open Bracket)

            = 3y + 4         (Step2: Do x / + - )


Example

Simplify    7y – 2(3y – 5) 

              = 7y – 6y + 10 

              = y + 10


Example

Find the value of 10 – 3k for k = 4

            10 – 3(4) = 10 – 12 = -2 (Step : Substitute k = 4 into k)


Example

The cost of parking, $p, at a car park is related to the parking duration, t hours, by the formula 

p = 2 + 2.5t

Find the value of p for each of the following values of t.

a.     t = 1

p = 2 + 2.5(1) = 4.5

b.     t= 3

p = 2 + 2.5(3) = 2 + 7.5 = 9.5


Example

Find the value of 12x + 2xy when x = 2 and y = 5

             12x2 + (2 x 2 x 5)

            = 24 + 20

            = 44


In Summary

1.  ab = a x b      


2.  a/b => a ÷ b => a x 1

                                    b

3.  a2= a x a,           a3= a x a x a


4.  a2b = a x a x b,            ab2 = a x b x b

            

5.  3p = 3 x p = p + p + p 


6.  3(p + q) = 3 x (p+ q) = 3p + 3q


7.  2(3 + y) =  2(3 + y) ÷ 5 =  2(3 + y)

     5                                           5


8. a2 + a= a(a + 1)        a2   = a x a, 


Note:                                     

a2 = a x a 

2a = 2 x a and 2a 

        aand 2a are 2 different algebraic terms.


Properties:

   a + b = b + a

           a x b = b x a


Practice

1.  Product of 4 and c and f


2.  Subtract  p from r and multiply the result by 3.


3.  Divide p by q


4.  Divide the square of x from the difference of y and x.


5.  Simplify the following algebras

     (a)   x + 3x + 4x          

     (b)   x + y + 3x + 2y

     (c)   -2z - 2z         

     (d)   2x2 + 2x + x - x2     

     (e)   7x2 + 3x - 8x - 4x2

     (f)    -x2 - 3x - x + x2


6. A box contains p pens and q pencils. How many pen and pencils are there in 6 boxes?


7. Annie has $p. She earns $q. She then spends of the total amount of money and save 20% of the total amount.

Write an algebraic expression for

a. the amount of money that she spends

b. the amount of money that she saves.


8.   Kenny's daily pay is $p, and is related to his  overtime hours, t by the formula

p = 100 + 12t

      Find the value of p for t when (a) t = 0, (b) t = 4.5


9. If a = 2, b = 3 and c = -2, evaluate the following:

  (a)  3a + b     (b)  5c - 2b     (c)  ab - 5    (d) ab2

S1T1 Number Sequences

Recognising Number Sequences


Consider the number sequence 4, 7, 10, 13, 16, 19, . . .


The first term in the sequence is 4, and the second term is 7.

How can we know the 'pattern' to the next number after 19 ?


Usually, we look at the first three numbers 4, 7 and 10, and check for a pattern


The most common way is to check for the  pattern is to find the difference between them. 


        = > 4 to 7 = 3, 7 to 10 = 3

=> the next sequence is adding 3.


Therefore the number after 19 is 19 + 3 = 22.


Example

Find the next three terms of the number sequence 3, 7, 11, 15, …

        7 -3 = 4, 11 - 7 = 4 (Step 1 : Find sequence pattern with first 3 numbers)


+4 is the pattern (Step 2 : Add to sequence 'pattern'


15 + 4 = 19, 19 + 4 = 23, 23 + 4 = 27

The next three terms are 19, 23 and 27.


Evaluating the "nth" Term (the "position" in the sequence) 

A formula or Expression can be given to a number sequence.

Then we can find the number in the sequence by substituting or "putting" the value into the Expression.


Example

A number sequence has the expression 2n + 3. Find the first three terms.

First term => n = 1

  5n + 2

When n = 1,     (Step 1 : Write Expression, and substitute )

    5n + 2  =5(1) + 2             (Step 2 : Substitute value to find answer)

    = 7


When n = 2,

    5n + 2 = 5(2) + 3 =13


When n = 3, 

               5n + 2 = 5(3) + 3 = 18

The first 3 terms are 7, 13, 18


Example

The nth term of a number sequence is 4n - 2. Find the 6th and 7th term.

4n - 2 (Step 1 : Write Expression, and substitute )


When n = 6, 

4n - 2 = 4(6) - 2 = 22 (Step 2 : Substitute value to find answer)


When n = 7, 

4n - 2 = 4(7) - 2 = 28 - 2 = 26

The 6th term is 22 and the 7th term is 26


Forming the Number Sequence Expression 

Example

The first 4 terms of a sequence are 4, 11, 18, 25

 a.  Find an expression for the nth term of this sequence

                 4 n + 7

     Step 1 : Find the pattern 

11 - 4 = 18 - 11 = 7 => pattern = +7

     

     Step 2: Form the first term with ? + 7n = 4

  1st term => n = 1

? + 7(1) = 4


     Step 3: Write the Expression

nth term = -3 + 7n


Practice

1.  Find the next three terms of the following number sequence

a.  1, 5, 9, 13, …

b.  7, 10, 13, 16,...

c.  102, 107, 112, 117, …


2.   Nth term of a number sequence is 3n - 1

(a)   Find the first three terms

(b)   Find the 10th term

(c)   Find the 99th term


3.  Simplify 2x  - 3(x - 2) [12/I/17/2/A]

                   3           5


4.  Simplify 3x  - 2x + 1 [14/II/17/8/A]

                    2         3

<< End of (1) Sec 2 Algebra NT/L1 and (2) Sec 1 NA >>


S1T1 Additional and Subtraction, Simplify Linear Algebraic Expressions

Addition and Subtraction of Linear Algebraic Expressions

An algebraic expression can be simplified by:

  "grouping" of the same variables and number operations.


Example

Simplify 2a + 4 + 2a + 1

             = 2a + 4a + 4 + 1           (Step 1 : "Group" variables and numbers)

     = 6a + 5                            (Step 2 : Do the + - )


Example

Do the followings:

a.   4a + 2b + 5a + b

         = 4a + 5a + 2b + b (Step 1 : Group same variables together) 

         = 9a + 3b (Step 2 : Do the + - )


b.    8p - 4q - 2p +5q                  (Step 1 : Group same variables together)

         = 8p + 2p - 4q + 5q              (Step 2 : Do the + - )

         = 10p + q


Simplify Linear Algebraic Expressions

Example

Simplify 5y – 2(y – 2)

            = 5y – 2y - 2 x -2 (Step1 : Open Bracket)

            = 3y – 4             Step2: Do x / + -)


Example

Simplify    7y – 2(3y – 5) 

              = 7y – 6y + 10 

              = y + 10


Example

Simplify -2(3p - 5) + 4p

             = -2 x 3p -2 x -5 + 4p       (Step1 : Open Bracket)

             = -6p + 10 + 4p                 (Step2: Do x / + -)

             = 10 - 2p


Simplify algebraic expression with Fractions

- Simplify fractional linear expression with common denominator into a single fraction

Example: 

    Simplify y(y + 2)

                  2         3

Step 1 : Multiply each for same denominator (L.C.M)

  L.C.M : 3 , 2 = 6 

             =     y x3 +   (y + 2)

                    2 x3         3x2


Step2: Combine the fractions into a single fraction

             =   3y  +  (2y + 2)

                   6           6

            =   3y  +  2y + 2

                          4y

            =         5y + 2

                          4y

Example

Simplify             5y - 3(y + 1)

                           3         2

 

       =  2x5y – 3x3(y + 1)        (Step 1 : Multiply each for same denominator (L.C.M))

           2x 3     3x    2                                   


       =  10y9(y + 1)              (Step2 : Combine the fractions into a single fraction)

             6          6

       = 10y – (9y + 1)

                   6

        = 10y – 9y – 9                 (Step 3 : Simplify : Do Order of Operations)

                     6

        = y – 9

              6


Example: 

Simplify 4y + 3(y-1)

              3        2

            =2 x 4y + 3x3(y-1)       (Step 1 : Multiply each for same denominator (L.C.M))

                 6           6

            = 8y +9y – 9                (Step2 : Combine the fractions into a single fraction)

                     6                         (Step 3 : Simplify : Do Order of Operations)

            = 17y – 9

                     6


Example

Simplify 2q - 3(q - 5)

              3        2

            = 2 x q - 3 x 3(q - 5)    (Step1 : Multiply each to get the same denominator)

               2 x 3       3 x 2

            = 2q -9(q - 5) (Step2 : Simplify and Do Order of Operations)

                6        6

            = 2q - 9q + 45                   

                      6

            = -7q +45

                   6


Practice

1. Do the followings:   

a.   5a + 2 + 6a - 1

b.   9a - 6b + a - 2b

c.   4a + 2a - 4a

d.   1 + a - 1 + b


2.  Simplify the followings:

a.  3y + (2 - y)

b.   5(a + b) - 2a

c.   4p - (p - 1)

d.   2(p + q + 1) - 1/2

e.   3/4 (a + b) - 1/3(a + 2b)


3.  Simplify 2x  - 3(x - 2) [12/I/17/2/A]

                   3           5


4.  Simplify 3x  - 2x + 1 [14/II/17/8/A]

                    2         3

S2T3 Expansion of Linear Expressions

Expansion of Linear Expressions

Expansion usually involves removing the bracket.


=>   a (b + c) = ab + ac


Expand 3( p + 2q)

    3(p + 2q) 

    = 3 x p + 6 x q                 (Step : Use a ( b + c) = ab + ac)

    = 3p + 6q


Example

(i) Expand        4 (a+ b) 

                        = 4 x + 4 x b           (Step : Use a ( b + c) = ab + ac)

                        = 4+ 4b

            

(ii) Expand        4 + a

                           5          

                        =  1 x (4 + a).       (Step : Use a ( b + c) = ab + ac)

                            5                                

                        =  4 + 1

                            5    5

                        =  4 + a

                            5    5


Expansion of 2 Linear Expressions

                                    

                        ( a + b) ( c + d) =   ac + ad     +   bc + bd                         

                                                         /\                        /\

                                             [      a x (c + d)  +    b x (c + d)    ]


 It is also called the "rainbow" arrow.


Example
Expand (y + 2)(y – 3)

Practice

1.   Expand the followings:

a.  5a(3 + b)

b.  2(9a - 2b)

c.  4(1 + 2a)

d.  7(3b - 4)


2.  Expand the followings

a.  (2a + b)(a + b)

b.  (3a - b)(2a + b)

c.  (4a - 2b)(a - b)

d.  (2a + 7b)(2a - 3b




S2T3 Multiplication and Division of Algebraic Fractions

Multiplication of Algebraic Fractions       

Simplify by 'reducing' the numbers and variables 


=> "Crossing out " same variables and numbers from numerator/denominator of the algebraic Expression


Example

Simplify the algebraic Expression

a   x   3b

       9         a

 Step 1 : Look for numbers that can be reduced => 3 and 1/9 can be reduced by 3

            : a and 1/a can be reduced a/a = 1

(1a) a   x   3b

    3 9        a

(1b) a   x    b

       3        a


Step 2 : Simplify

1   x  b

                                 3

      =   1 b or  b  

                           3         3


Example

Simplify 3a x 2b

               4     a

           = 5a x 2b (Step 1 : Look and "cross" same variables/numbers)

              2 4     a                      (Step 2 : Simplify)

           =   5b

                 2              


Example

Simplify   3a x 14b

                7b     9a

            = 3a   x   214b   = 2a   

               7b         39c       3c


Example

Simplify         2a2   x  5b

                     15b2      a

                    =  2a25b

                     315b2     a

                    = 2a

                       3b


Division of Algebraic fraction

First, to 'convert' the expressions to multiplication before simplifying the expression.

=> a     ÷     c      =    a      x     d

                                b            d            b             c

Example

Simplify 3b  ÷  2b

               4       a

        =    3b  x  a                (Step 1 : Change the ÷ to multiply by 'flipping' the fraction)

               4      2b               (Step 2 : Look and "cross" same variables/numbers)

        =     3a           (Step 3 : Simplify)

                8


Example 

Simplify            3a  ÷ 9a2   

                         8      10

                        =  3a 10         (Step 1 : Change the ÷ to multiply by 'flipping' the fraction)

                             8     9a     

                        = 13ax 510         (Step 2 : Look and "cross" same variables/numbers)

                                   48      39a2               (Step 3 : Simplify)

                        =   5a

                             12


Practice

Simplify the following

 (a)    2a x 3a                (b)  b2 x 6b

          9     16                       2

 

(c)   3y  x  4x2                 (d) -3a2 x 4a


(e)   10y ÷ 4                  (f)  4a  ÷ 2


(g)    -2a ÷ -a                (h)  b2 ÷ b

          5      10                      3