Saturday, 1 February 2020

S1T1 Algebra Notation, Expressions and Formulae

Algebra: The use of letters (a, b, x, y, …) to represent numbers (or quantities)

               The letters are used to denote unknown numbers or variables.


Variables and Algebraic Expressions


Variables ~ letters to represent numbers that we don't know

Algebraic Expressions => numbers and letters that are connected by operations ( x / + -)


Example of Algebraic Expressions

Add y and 4  = y + 4


5 group of a  = 5 x a =  5a


Product of 5, a and b = 5 x a x b = 5ab


Divide y by 4 = y/


Example

Tina has $x at first. She spent $3 on a pen. 

a.   How much money is she left with?

x - 3


b.    Her sister gave her $5. How much money does she have?

x + 5


Equivalent Algebraic Expressions

Properties

   a + b = b + a

           a x b = b x a


Algebraic Expression can be written in different forms.


Example

x + 2 = 2 + x

1/2 ( p + q) = p + q

                                 2

 

Use of Bracket and Order of Operations

Property:


a ( b + c) = ab + ac


Example

 

3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3


The preferred written form is 3(x + y) 


Similarly,

½ ( u + v ) = (u + v) = ½ u + ½ v

       2

Example 

(i) Expand        4 (a + b) 

                     = 4 x a + 4 x b 

                     = 4a + 4b

            

(ii) Expand        4 + a

                            5          

                      =   1 x (4 + a) 

                           5                                 

                      = 4 + 1

                         5    5

                      = 4 + a

                         5    5


Example

Mary has $p in her wallet and $q in her pocket.

She spent half of the total amount of money and gave 20% of the total amount to her sister.

Write an algebraic expression for

(a) the amount of money that she spent

      Total amount = p + q

       Spent = 1/2 (p + q)


(b)  the amount to her sister 

             = 20% of total amount

             = 20/100 x (p + q)

     = 1/5 (p + q)


Square and Cube

Area of square of side p = side x side

                       = p x p = p2 , (not written as pp)

Similarly,

Volume of square = p x p x p = p3 


Example 

Write the equivalent Algebraic Expression of 

      2 x p x p x q

      = 2 p2 q


Example

A square has a length of p. 

Write an algebraic expression for 

(a) What is the total area of 6 such square?

     Area of square = p x p = p2    (Step1 : Write the formula)

              6 square = 6 x p2           (Step 2: other operations? => x 6)

             = 6p2 

(b)  What is the volume of the 6 squares?

       Volume of square = p x p x p = p3     (Step 1 : Write the Formula)

Volume of 6 squares = 6 x p3 = 6 p3 (Step 2 : Operation operations?)


Evaluating Algebraic Expressions and Formulas

Example

Simplify 5y – 2(y – 2)

            = 5y – 2y - 2 x -2 (Step1 : Open Bracket)

            = 3y + 4         (Step2: Do x / + - )


Example

Simplify    7y – 2(3y – 5) 

              = 7y – 6y + 10 

              = y + 10


Example

Find the value of 10 – 3k for k = 4

            10 – 3(4) = 10 – 12 = -2 (Step : Substitute k = 4 into k)


Example

The cost of parking, $p, at a car park is related to the parking duration, t hours, by the formula 

p = 2 + 2.5t

Find the value of p for each of the following values of t.

a.     t = 1

p = 2 + 2.5(1) = 4.5

b.     t= 3

p = 2 + 2.5(3) = 2 + 7.5 = 9.5


Example

Find the value of 12x + 2xy when x = 2 and y = 5

             12x2 + (2 x 2 x 5)

            = 24 + 20

            = 44


In Summary

1.  ab = a x b      


2.  a/b => a ÷ b => a x 1

                                    b

3.  a2= a x a,           a3= a x a x a


4.  a2b = a x a x b,            ab2 = a x b x b

            

5.  3p = 3 x p = p + p + p 


6.  3(p + q) = 3 x (p+ q) = 3p + 3q


7.  2(3 + y) =  2(3 + y) ÷ 5 =  2(3 + y)

     5                                           5


8. a2 + a= a(a + 1)        a2   = a x a, 


Note:                                     

a2 = a x a 

2a = 2 x a and 2a 

        aand 2a are 2 different algebraic terms.


Properties:

   a + b = b + a

           a x b = b x a


Practice

1.  Product of 4 and c and f


2.  Subtract  p from r and multiply the result by 3.


3.  Divide p by q


4.  Divide the square of x from the difference of y and x.


5.  Simplify the following algebras

     (a)   x + 3x + 4x          

     (b)   x + y + 3x + 2y

     (c)   -2z - 2z         

     (d)   2x2 + 2x + x - x2     

     (e)   7x2 + 3x - 8x - 4x2

     (f)    -x2 - 3x - x + x2


6. A box contains p pens and q pencils. How many pen and pencils are there in 6 boxes?


7. Annie has $p. She earns $q. She then spends of the total amount of money and save 20% of the total amount.

Write an algebraic expression for

a. the amount of money that she spends

b. the amount of money that she saves.


8.   Kenny's daily pay is $p, and is related to his  overtime hours, t by the formula

p = 100 + 12t

      Find the value of p for t when (a) t = 0, (b) t = 4.5


9. If a = 2, b = 3 and c = -2, evaluate the following:

  (a)  3a + b     (b)  5c - 2b     (c)  ab - 5    (d) ab2

S1T1 Number Sequences

Number Patterns

Usually in the form of structured series of numbers in uniform changes


Recognising Number Sequences


Consider the number sequence 4, 7, 10, 13, 16, 19, . . .


The first term in the sequence is 4, and the second term is 7.

How can we know the 'pattern' to the next number after 19 ?


Usually, we look at the first three numbers 4, 7 and 10, and check for a pattern


The most common way is to check for the  pattern is to find the difference between them. 


        = > 4 to 7 = 3, 7 to 10 = 3

=> the next sequence is adding 3.


Therefore the number after 19 is 19 + 3 = 22.


Example

Find the next three terms of the number sequence 3, 7, 11, 15, …

        7 -3 = 4, 11 - 7 = 4 (Step 1 : Find sequence pattern with first 3 numbers)


+4 is the pattern (Step 2 : Add to sequence 'pattern'


15 + 4 = 19, 19 + 4 = 23, 23 + 4 = 27

The next three terms are 19, 23 and 27.


Common Words used
Position(Term)           1     2      3     4      5 .... N  
Pattern                      2 ,   5  ,   8  , 11 , 14 .... nth term 
                                     +3    +3   +3    +3       
a = The first term = The first number = a = 2
d = difference between 2 numbers = 3 
Nth term = the value at position N
Formula/Equation:   Nth term = a + (n - 1)d

Example: What is the value of the 11th term ?

  15th term = 2 + (11 - 1) x 3 = 32

Evaluating the "nth" Term (the "position" in the sequence) 

A formula or Expression can be given for a number sequence.

Then we can find the number in the sequence by substituting or "putting" the value into the Expression.


Example

A number sequence has the expression 2n + 3. Find the first three terms.

First term => n = 1

  5n + 2

When n = 1,     (Step 1 : Write Expression, and substitute )

    5n + 2  =5(1) + 2             (Step 2 : Substitute value to find answer)

    = 7


When n = 2,

    5n + 2 = 5(2) + 3 =13


When n = 3, 

               5n + 2 = 5(3) + 3 = 18

The first 3 terms are 7, 13, 18


Example

The nth term of a number sequence is 4n - 2. Find the 6th and 7th term.

4n - 2 (Step 1 : Write Expression, and substitute )


When n = 6, 

4n - 2 = 4(6) - 2 = 22 (Step 2 : Substitute value to find answer)


When n = 7, 

4n - 2 = 4(7) - 2 = 28 - 2 = 26

The 6th term is 22 and the 7th term is 26


Forming the Number Sequence Expression 

Example

The first 4 terms of a sequence are 4, 11, 18, 25

 a.  Find an expression for the nth term of this sequence

                 4 n + 7

     Step 1 : Find the pattern 

11 - 4 = 18 - 11 = 7 => pattern = +7

     

     Step 2: Form the first term with ? + 7n = 4

  1st term => n = 1

? + 7(1) = 4


     Step 3: Write the Expression

nth term = -3 + 7n


Practice

1.  Find the next three terms of the following number sequence

a.  1, 5, 9, 13, …

b.  7, 10, 13, 16,...

c.  102, 107, 112, 117, …


2.   Nth term of a number sequence is 3n - 1

(a)   Find the first three terms

(b)   Find the 10th term

(c)   Find the 99th term


3.  Simplify 2x  - 3(x - 2) [12/I/17/2/A]

                   3           5


4.  Simplify 3x  - 2x + 1 [14/II/17/8/A]

                    2         3

<< End of (1) Sec 2 Algebra NT/L1 and (2) Sec 1 NA >>


S1T1 Additional and Subtraction, Simplify Linear Algebraic Expressions

Addition and Subtraction of Linear Algebraic Expressions

An algebraic expression can be simplified by:

  "grouping" of the same variables and number operations.


Example

Simplify 2a + 4 + 2a + 1

             = 2a + 4a + 4 + 1        (Step 1 : "Group" variables and numbers)

     = 6a + 5                       (Step 2 : Do the + - )


Example

Do the followings:

a.   4a + 2b + 5a + b

         = 4a + 5a + 2b + b (Step 1 : Group same variables together) 

         = 9a + 3b (Step 2 : Do the + - )


b.    8p - 4q - 2p +5q                  (Step 1 : Group same variables together)

         = 8p + 2p - 4q + 5q              (Step 2 : Do the + - )

         = 10p + q


Simplify Linear Algebraic Expressions

Example

Simplify 5y – 2(y – 2)

            = 5y – 2y - 2 x -2 (Step1 : Open Bracket)

            = 3y – 4             Step2: Do x / + -)


Example

Simplify    7y – 2(3y – 5) 

              = 7y – 6y + 10 

              = y + 10


Example

Simplify -2(3p - 5) + 4p

             = -2 x 3p -2 x -5 + 4p       (Step1 : Open Bracket)

             = -6p + 10 + 4p                 (Step2: Do x / + -)

             = 10 - 2p


Simplify algebraic expression with Fractions

- Simplify fractional linear expression with common denominator into a single fraction

Example: 

    Simplify y(y + 2)

                  2         3

Step 1 : Multiply each for same denominator (L.C.M)

  L.C.M : 3 , 2 = 6 

             =     y x3 +   (y + 2)

                    2 x3         3x2


Step2: Combine the fractions into a single fraction

             =   3y  +  (2y + 2)

                   6           6

            =   3y  +  2y + 2

                          4y

            =         5y + 2

                          4y

Example

Simplify             5y - 3(y + 1)

                           3         2

 

       =  2x5y – 3x3(y + 1)        (Step 1 : Multiply each for same denominator (L.C.M))

           2x 3     3x    2                                   


       =  10y9(y + 1)              (Step2 : Combine the fractions into a single fraction)

             6          6

       = 10y – (9y + 1)

                   6

        = 10y – 9y – 9                 (Step 3 : Simplify : Do Order of Operations)

                     6

        = y – 9

              6


Example: 

Simplify 4y + 3(y-1)

              3        2

            =2 x 4y + 3x3(y-1)       (Step 1 : Multiply each for same denominator (L.C.M))

                 6           6

            = 8y +9y – 9                (Step2 : Combine the fractions into a single fraction)

                     6                         (Step 3 : Simplify : Do Order of Operations)

            = 17y – 9

                     6


Example

Simplify 2q - 3(q - 5)

              3        2

            = 2 x q - 3 x 3(q - 5)    (Step1 : Multiply each to get the same denominator)

               2 x 3       3 x 2

            = 2q -9(q - 5) (Step2 : Simplify and Do Order of Operations)

                6        6

            = 2q - 9q + 45                   

                      6

            = -7q +45

                   6


Practice

1. Do the followings:   

a.   5a + 2 + 6a - 1

b.   9a - 6b + a - 2b

c.   4a + 2a - 4a

d.   1 + a - 1 + b


2.  Simplify the followings:

a.  3y + (2 - y)

b.   5(a + b) - 2a

c.   4p - (p - 1)

d.   2(p + q + 1) - 1/2

e.   3/4 (a + b) - 1/3(a + 2b)


3.  Simplify 2x  - 3(x - 2) [12/I/17/2/A]

                   3           5


4.  Simplify 3x  - 2x + 1 [14/II/17/8/A]

                    2         3

S2T3 Expansion of Linear Expressions

Expansion of Linear Expressions

Expansion usually involves removing the bracket.


=>   a (b + c) = ab + ac


Expand 3( p + 2q)

    3(p + 2q) 

    = 3 x p + 6 x q                 (Step : Use a ( b + c) = ab + ac)

    = 3p + 6q


Example

(i) Expand        4 (a+ b) 

                        = 4 x + 4 x b           (Step : Use a ( b + c) = ab + ac)

                        = 4+ 4b

            

(ii) Expand        4 + a

                           5          

                        =  1 x (4 + a).       (Step : Use a ( b + c) = ab + ac)

                            5                                

                        =  4 + 1

                            5    5

                        =  4 + a

                            5    5


Expansion of 2 Linear Expressions

                                    

                        ( a + b) ( c + d) =   ac + ad     +   bc + bd                         

                                                         /\                        /\

                                             [      a x (c + d)  +    b x (c + d)    ]


 It is also called the "rainbow" arrow.


Example
Expand (y + 2)(y – 3)

Practice

1.   Expand the followings:

a.  5a(3 + b)

b.  2(9a - 2b)

c.  4(1 + 2a)

d.  7(3b - 4)


2.  Expand the followings

a.  (2a + b)(a + b)

b.  (3a - b)(2a + b)

c.  (4a - 2b)(a - b)

d.  (2a + 7b)(2a - 3b