Saturday, 1 February 2020

N51-G123 Algebra Notation, Expressions and Formulae

Algebra: The use of letters (a, b, x, y, …) to represent numbers (or quantities)

               The letters are used to denote unknown numbers or variables.


Variables and Algebraic Expressions


Variables ~ letters to represent numbers that we don't know

Algebraic Expressions => numbers and letters that are connected by operations ( x / + -)

In Summary

1.  ab = a x b      


2.  a/b => a ÷ b => a x 1

                                    b

3.  a2= a x a,           a3= a x a x a


4.  a2b = a x a x b,            ab= a x b x b

            

5.  3p = 3 x p = p + p + p 


6.  3(p + q) = 3 x (p+ q) = 3p + 3q


7.  2(3 + y) =  2(3 + y) ÷ 5 =  2(3 + y)

     5                                           5


8. a2 + a= a(a + 1)        a2   = a x a, 


Note:                                     

a2 = a x a 

2a = 2 x a and 2a 

        aand 2a are 2 different algebraic terms.


Also:

   a + b = b + a

           a x b = b x a


Example of Algebraic Expressions

Add y and 4  = y + 4


5 group of a  = 5 x a =  5a


Product of 5, a and b = 5 x a x b = 5ab


Divide y by 4 = y/


Example

Tina has $x at first. She spent $3 on a pen. 

a.   How much money is she left with?

x - 3


b.    Her sister gave her $5. How much money does she have?

x + 5


Equivalent Algebraic Expressions

Properties

   a + b = b + a

           a x b = b x a


Algebraic Expression can be written in different forms.


Example

x + 2 = 2 + x

1/2 ( p + q) = p + q

                                 2

 

Use of Bracket and Order of Operations

Property:


a ( b + c) = ab + ac


Example

 

3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3


The preferred written form is 3(x + y) 


Similarly,

½ ( u + v ) = (u + v) = ½ u + ½ v

       2

Example 

(i) Expand        4 (a + b) 

                     = 4 x a + 4 x b 

                     = 4a + 4b

            

(ii) Expand        4 + a

                            5          

                      =   1 x (4 + a) 

                           5                                 

                      = 4 + 1

                         5    5

                      = 4 + a

                         5    5


Example

Mary has $p in her wallet and $q in her pocket.

She spent half of the total amount of money and gave 20% of the total amount to her sister.

Write an algebraic expression for

(a) the amount of money that she spent

      Total amount = p + q

       Spent = 1/2 (p + q)


(b)  the amount to her sister 

             = 20% of total amount

             = 20/100 x (p + q)

     = 1/5 (p + q)


Square and Cube

Area of square of side p = side x side

                       = p x p = p2 , (not written as pp)

Similarly,

Volume of square = p x p x p = p3 


Example 

Write the equivalent Algebraic Expression of 

      2 x p x p x q

      = 2 p2 q


Example

A square has a length of p. 

Write an algebraic expression for 

(a) What is the total area of 6 such square?

     Area of square = p x p = p2    (Step1 : Write the formula)

              6 square = 6 x p2           (Step 2: other operations? => x 6)

             = 6p2 

(b)  What is the volume of the 6 squares?

       Volume of square = p x p x p = p3     (Step 1 : Write the Formula)

Volume of 6 squares = 6 x p3 = 6 p3 (Step 2 : Operation operations?)



Example

Find the value of 10 – 3k for k = 4

            10 – 3(4) = 10 – 12 = -2 (Step : Substitute k = 4 into k)


Example

The cost of parking, $p, at a car park is related to the parking duration, t hours, by the formula 

p = 2 + 2.5t

Find the value of p for each of the following values of t.

a.     t = 1

p = 2 + 2.5(1) = 4.5

b.     t= 3

p = 2 + 2.5(3) = 2 + 7.5 = 9.5


Example

Find the value of 12x + 2xy when x = 2 and y = 5

             12x2 + (2 x 2 x 5)

            = 24 + 20

            = 44



Practice

1.  Product of 4 and c and f


2.  Subtract  p from r and multiply the result by 3.


3.  Divide p by q


4.  Divide the square of x from the difference of y and x.


5.  Simplify the following algebras

     (a)   x + 3x + 4x          

     (b)   x + y + 3x + 2y

     (c)   -2z - 2z         

     (d)   2x2 + 2x + x - x2     

     (e)   7x2 + 3x - 8x - 4x2

     (f)    -x2 - 3x - x + x2


6. A box contains p pens and q pencils. How many pen and pencils are there in 6 boxes?


7. Annie has $p. She earns $q. She then spends of the total amount of money and save 20% of the total amount.

Write an algebraic expression for

a. the amount of money that she spends

b. the amount of money that she saves.


8.   Kenny's daily pay is $p, and is related to his  overtime hours, t by the formula

p = 100 + 12t

      Find the value of p for t when (a) t = 0, (b) t = 4.5


9. If a = 2, b = 3 and c = -2, evaluate the following:

  (a)  3a + b     (b)  5c - 2b     (c)  ab - 5    (d) ab2

N51-G123 Number Sequences

Number Patterns

Usually in the form of structured series of numbers in uniform changes


Recognising Number Sequences


Consider the number sequence 4, 7, 10, 13, 16, 19, . . .


The first term in the sequence is 4, and the second term is 7.

How can we know the 'pattern' to the next number after 19 ?


Usually, we look at the first three numbers 4, 7 and 10, and check for a pattern


The most common way is to check for the  pattern is to find the difference between them. 


        = > 4 to 7 = 3, 7 to 10 = 3

=> the next sequence is adding 3.


Therefore the number after 19 is 19 + 3 = 22.


Example

Find the next three terms of the number sequence 3, 7, 11, 15, …

        7 -3 = 4, 11 - 7 = 4 (Step 1 : Find sequence pattern with first 3 numbers)


+4 is the pattern (Step 2 : Add to sequence 'pattern'


15 + 4 = 19, 19 + 4 = 23, 23 + 4 = 27

The next three terms are 19, 23 and 27.


Common Words used
Position(Term)           1     2      3     4      5 .... N  
Pattern                      2 ,   5  ,   8  , 11 , 14 .... nth term 
                                     +3    +3   +3    +3       
a = The first term = The first number  = 2
d = difference between 2 numbers = 3 
Nth term = the value at position N
Formula/Equation:   Nth term = a + (n - 1)d

Example: What is the value of the 11th term ?

  15th term = 2 + (11 - 1) x 3 = 32

Evaluating the "nth" Term (the "position" in the sequence) 

A formula or Expression can be given for a number sequence.

Then we can find the number in the sequence by substituting or "putting" the value into the Expression.


Example

A number sequence has the expression 2n + 3. Find the first three terms.

First term => n = 1

  5n + 2

When n = 1,     (Step 1 : Write Expression, and substitute )

    5n + 2  =5(1) + 2             (Step 2 : Substitute value to find answer)

    = 7


When n = 2,

    5n + 2 = 5(2) + 3 =13


When n = 3, 

               5n + 2 = 5(3) + 3 = 18

The first 3 terms are 7, 13, 18


Example

The nth term of a number sequence is 4n - 2. Find the 6th and 7th term.

4n - 2 (Step 1 : Write Expression, and substitute )


When n = 6, 

4n - 2 = 4(6) - 2 = 22 (Step 2 : Substitute value to find answer)


When n = 7, 

4n - 2 = 4(7) - 2 = 28 - 2 = 26

The 6th term is 22 and the 7th term is 26


Forming the Number Sequence Expression 

Example

The first 4 terms of a sequence are 4, 11, 18, 25

 a.  Find an expression for the nth term of this sequence

                 4 n + 7

     Step 1 : Find the pattern 

11 - 4 = 18 - 11 = 7 => pattern = +7

     

     Step 2: Form the first term with ? + 7n = 4

  1st term => n = 1

? + 7(1) = 4


     Step 3: Write the Expression

nth term = -3 + 7n


Practice

1.  Find the next three terms of the following number sequence

a.  1, 5, 9, 13, …

b.  7, 10, 13, 16,...

c.  102, 107, 112, 117, …


2.   Nth term of a number sequence is 3n - 1

(a)   Find the first three terms

(b)   Find the 10th term

(c)   Find the 99th term


3.  Simplify 2x  - 3(x - 2) [12/I/17/2/A]

                   3           5


4.  Simplify 3x  - 2x + 1 [14/II/17/8/A]

                    2         3


N51-G23 Additional and Subtraction, Simplify Linear Algebraic Expressions

Addition and Subtraction of Linear Algebraic Expressions

An algebraic expression can be simplified by:

  "grouping" of the same variables and number operations.


Example

Simplify 2a + 4 + 2a + 1

             = 2a + 4a + 4 + 1        (Step 1 : "Group" variables and numbers)

     = 6a + 5                       (Step 2 : Do the + - )


Example

Do the followings:

a.   4a + 2b + 5a + b

         = 4a + 5a + 2b + b (Step 1 : Group same variables together) 

         = 9a + 3b (Step 2 : Do the + - )


b.    8p - 4q - 2p +5q                  (Step 1 : Group same variables together)

         = 8p + 2p - 4q + 5q              (Step 2 : Do the + - )

         = 10p + q


Simplify Linear Algebraic Expressions

Use of Bracket and Order of Operations


Property: a ( b + c) = ab + ac


3 ( a + b ) = 3 x ( a + b ) = ( a + b ) x 3    preferred written form is 3(x + y) 

½ ( u + v ) = (u + v) = ½ u + ½ v

  2


Example

Simplify 5y – 2(y – 2)

            = 5y – 2y - 2 x -2 (Step1 : Open Bracket)

            = 3y – 4             Step2: Do x / + -)


Example

Simplify    7y – 2(3y – 5) 

              = 7y – 6y + 10 

              = y + 10


Example

Simplify -2(3p - 5) + 4p

             = -2 x 3p -2 x -5 + 4p       (Step1 : Open Bracket)

             = -6p + 10 + 4p                 (Step2: Do x / + -)

             = 10 - 2p


Practice

1. Do the followings:   

a.   5a + 2 + 6a - 1

b.   9a - 6b + a - 2b

c.   4a + 2a - 4a

d.   1 + a - 1 + b


2.  Simplify the followings:

a.  3y + (2 - y)

b.   5(a + b) - 2a

c.   4p - (p - 1)

d.   2(p + q + 1) - 1/2

e.   3/4 (a + b) - 1/3(a + 2b)

N52-G23 Expansion of Linear Expressions

Expansion of Linear Expressions

Expansion usually involves removing the bracket.


=>   a (b + c) = ab + ac


Expand 3( p + 2q)

    3(p + 2q) 

    = 3 x p + 6 x q                 (Step : Use a ( b + c) = ab + ac)

    = 3p + 6q


Example

(i) Expand        4 (a+ b) 

                        = 4 x + 4 x b           (Step : Use a ( b + c) = ab + ac)

                        = 4+ 4b

            

(ii) Expand        4 + a

                           5          

                        =  1 x (4 + a).       (Step : Use a ( b + c) = ab + ac)

                            5                                

                        =  4 + 1

                            5    5

                        =  4 + a

                            5    5


Examples

Expand and simplify

6(a + b) - 3a(2 - 5a)

        = 6a + 6b - 6a +15a2 Step 1: Open/remove bracket

  = 6a + 6b - 6a  + 15a2 Step 2 : Group and simplify

= 15a2 +6b


Example

(1) Simplify (6y2– 4y – 3) – 2(2y2– 3y + 2)

           (6y2– 4y – 3) – 2(2y2– 3y + 2)      Step 1: Open bracket

         = 6y2– 4y – 3 – 4y2+ 6y – 4                          ( -2 x -3y = 6x [- x - = +] )

         = 6y2– 4y2– 4y + 6y – 3 – 4           Step 2: Group variables (y2with y2, y, numbers)

         = 2y2+ 2y – 7


(2) Simplify (2x2 + 2) + (3x2 + x + 1)

2x2 + 2 + 3x2 + x + 1 (Step 1 : Open bracket)

        = 2x2 + 3x2 + x + 1 + 2                     (Step2: Group x2, x , numbers)

        = 5x2 + x + 3


(3) Simplify and factorise (2x2+ 3x - 7) + (3x2– 4x + 3) 

              2x2– 3x + 4 + 3x2– x  - 3             (Step 1 : Open bracket)

          =  2x2 + 3x2+ 3x – 4x - 7 + 3          (Step2: Group x2, x , numbers)

          =  5x2– x - 4 (Step3 : Factorise)

          =  (5x - 4)(x - 1)


Expansion of 2 Linear Expressions

                                    

                        ( a + b) ( c + d) =   ac + ad     +   bc + bd                         

                                                         /\                        /\

                                             [      a x (c + d)  +    b x (c + d)    ]


 It is also called the "rainbow" arrow.


Example
Expand (y + 2)(y – 3)

Practice

1.   Expand the followings:

a.  5a(3 + b)

b.  2(9a - 2b)

c.  4(1 + 2a)

d.  7(3b - 4)


2.  Expand the followings

a.  (2a + b)(a + b)

b.  (3a - b)(2a + b)

c.  (4a - 2b)(a - b)

d.  (2a + 7b)(2a - 3b